Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the equation of the central street [tex]\(PQ\)[/tex] that is perpendicular to the lane passing through points [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we need a clear understanding of the relationship between perpendicular lines.
First, let’s start by analyzing the given equation of the lane passing through [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ -7x + 3y = -21.5 \][/tex]
To find the slope of this line, we should convert it to the slope-intercept form, [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
Starting with the given equation:
[tex]\[ -7x + 3y = -21.5 \][/tex]
Resolve for [tex]\(y\)[/tex]:
[tex]\[ 3y = 7x - 21.5 \][/tex]
[tex]\[ y = \frac{7}{3}x - \frac{21.5}{3} \][/tex]
From this, we see that the slope [tex]\(m\)[/tex] of line [tex]\(AB\)[/tex] is:
[tex]\[ m = \frac{7}{3} \][/tex]
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. Thus, the slope of the perpendicular line [tex]\(PQ\)[/tex] will be the negative reciprocal of [tex]\(\frac{7}{3}\)[/tex]:
[tex]\[ m_{PQ} = -\frac{1}{\left(\frac{7}{3}\right)} = -\frac{3}{7} \][/tex]
Now, we need to identify which of the given equations has this slope [tex]\(-\frac{3}{7}\)[/tex]. Let’s rewrite each of the given equations in slope-intercept form and identify their slopes.
A. [tex]\(-3x + 4y = 3\)[/tex]
[tex]\[ 4y = 3x + 3 \][/tex]
[tex]\[ y = \frac{3}{4}x + \frac{3}{4} \][/tex]
The slope here is [tex]\(\frac{3}{4}\)[/tex].
B. [tex]\(3x + 7y = 63\)[/tex]
[tex]\[ 7y = -3x + 63 \][/tex]
[tex]\[ y = -\frac{3}{7}x + 9 \][/tex]
The slope here is [tex]\(-\frac{3}{7}\)[/tex].
C. [tex]\(2x + y = 20\)[/tex]
[tex]\[ y = -2x + 20 \][/tex]
The slope here is [tex]\(-2\)[/tex].
D. [tex]\(7x + 3y = 70\)[/tex]
[tex]\[ 3y = -7x + 70 \][/tex]
[tex]\[ y = -\frac{7}{3}x + \frac{70}{3} \][/tex]
The slope here is [tex]\(-\frac{7}{3}\)[/tex].
Among the given choices, only option B has the slope [tex]\(-\frac{3}{7}\)[/tex].
So, the equation of the central street [tex]\(PQ\)[/tex] is:
[tex]\[ 3x + 7y = 63 \][/tex]
First, let’s start by analyzing the given equation of the lane passing through [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ -7x + 3y = -21.5 \][/tex]
To find the slope of this line, we should convert it to the slope-intercept form, [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
Starting with the given equation:
[tex]\[ -7x + 3y = -21.5 \][/tex]
Resolve for [tex]\(y\)[/tex]:
[tex]\[ 3y = 7x - 21.5 \][/tex]
[tex]\[ y = \frac{7}{3}x - \frac{21.5}{3} \][/tex]
From this, we see that the slope [tex]\(m\)[/tex] of line [tex]\(AB\)[/tex] is:
[tex]\[ m = \frac{7}{3} \][/tex]
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. Thus, the slope of the perpendicular line [tex]\(PQ\)[/tex] will be the negative reciprocal of [tex]\(\frac{7}{3}\)[/tex]:
[tex]\[ m_{PQ} = -\frac{1}{\left(\frac{7}{3}\right)} = -\frac{3}{7} \][/tex]
Now, we need to identify which of the given equations has this slope [tex]\(-\frac{3}{7}\)[/tex]. Let’s rewrite each of the given equations in slope-intercept form and identify their slopes.
A. [tex]\(-3x + 4y = 3\)[/tex]
[tex]\[ 4y = 3x + 3 \][/tex]
[tex]\[ y = \frac{3}{4}x + \frac{3}{4} \][/tex]
The slope here is [tex]\(\frac{3}{4}\)[/tex].
B. [tex]\(3x + 7y = 63\)[/tex]
[tex]\[ 7y = -3x + 63 \][/tex]
[tex]\[ y = -\frac{3}{7}x + 9 \][/tex]
The slope here is [tex]\(-\frac{3}{7}\)[/tex].
C. [tex]\(2x + y = 20\)[/tex]
[tex]\[ y = -2x + 20 \][/tex]
The slope here is [tex]\(-2\)[/tex].
D. [tex]\(7x + 3y = 70\)[/tex]
[tex]\[ 3y = -7x + 70 \][/tex]
[tex]\[ y = -\frac{7}{3}x + \frac{70}{3} \][/tex]
The slope here is [tex]\(-\frac{7}{3}\)[/tex].
Among the given choices, only option B has the slope [tex]\(-\frac{3}{7}\)[/tex].
So, the equation of the central street [tex]\(PQ\)[/tex] is:
[tex]\[ 3x + 7y = 63 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.