Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

A software designer is mapping the streets for a new racing game. All of the streets are depicted as either perpendicular or parallel lines. The equation of the lane passing through [tex]$A$[/tex] and [tex]$B$[/tex] is [tex]$-7x + 3y = -21.5$[/tex]. What is the equation of the central street [tex]$PQ$[/tex]?

A. [tex]$-3x + 4y = 3$[/tex]

B. [tex]$3x + 7y = 63$[/tex]

C. [tex]$2x + y = 20$[/tex]

D. [tex]$7x + 3y = 70$[/tex]

Sagot :

To determine the equation of the central street [tex]\(PQ\)[/tex] that is perpendicular to the lane passing through points [tex]\(A\)[/tex] and [tex]\(B\)[/tex], we need a clear understanding of the relationship between perpendicular lines.

First, let’s start by analyzing the given equation of the lane passing through [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ -7x + 3y = -21.5 \][/tex]

To find the slope of this line, we should convert it to the slope-intercept form, [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.

Starting with the given equation:
[tex]\[ -7x + 3y = -21.5 \][/tex]

Resolve for [tex]\(y\)[/tex]:
[tex]\[ 3y = 7x - 21.5 \][/tex]
[tex]\[ y = \frac{7}{3}x - \frac{21.5}{3} \][/tex]

From this, we see that the slope [tex]\(m\)[/tex] of line [tex]\(AB\)[/tex] is:
[tex]\[ m = \frac{7}{3} \][/tex]

For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. Thus, the slope of the perpendicular line [tex]\(PQ\)[/tex] will be the negative reciprocal of [tex]\(\frac{7}{3}\)[/tex]:

[tex]\[ m_{PQ} = -\frac{1}{\left(\frac{7}{3}\right)} = -\frac{3}{7} \][/tex]

Now, we need to identify which of the given equations has this slope [tex]\(-\frac{3}{7}\)[/tex]. Let’s rewrite each of the given equations in slope-intercept form and identify their slopes.

A. [tex]\(-3x + 4y = 3\)[/tex]
[tex]\[ 4y = 3x + 3 \][/tex]
[tex]\[ y = \frac{3}{4}x + \frac{3}{4} \][/tex]
The slope here is [tex]\(\frac{3}{4}\)[/tex].

B. [tex]\(3x + 7y = 63\)[/tex]
[tex]\[ 7y = -3x + 63 \][/tex]
[tex]\[ y = -\frac{3}{7}x + 9 \][/tex]
The slope here is [tex]\(-\frac{3}{7}\)[/tex].

C. [tex]\(2x + y = 20\)[/tex]
[tex]\[ y = -2x + 20 \][/tex]
The slope here is [tex]\(-2\)[/tex].

D. [tex]\(7x + 3y = 70\)[/tex]
[tex]\[ 3y = -7x + 70 \][/tex]
[tex]\[ y = -\frac{7}{3}x + \frac{70}{3} \][/tex]
The slope here is [tex]\(-\frac{7}{3}\)[/tex].

Among the given choices, only option B has the slope [tex]\(-\frac{3}{7}\)[/tex].

So, the equation of the central street [tex]\(PQ\)[/tex] is:
[tex]\[ 3x + 7y = 63 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.