Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which number among the given choices is irrational, let's examine each one step-by-step.
### Definition of Rational and Irrational Numbers
1. Rational Numbers: These can be expressed as the quotient or fraction [tex]\(\frac{p}{q}\)[/tex] of two integers [tex]\(p\)[/tex] and [tex]\(q\)[/tex], where [tex]\(q \neq 0\)[/tex]. Examples include 0.5, -3, [tex]\(\frac{3}{4}\)[/tex], etc.
2. Irrational Numbers: These cannot be expressed as a fraction of two integers. Their decimal expansions are non-repeating and non-terminating. Examples include [tex]\(\pi\)[/tex], [tex]\(e\)[/tex], and [tex]\(\sqrt{2}\)[/tex].
### Analyzing Each Choice
#### Choice A: [tex]\(\sqrt{7}\)[/tex]
- The square root of 7 is approximately 2.6457513110645907.
- Since 7 is not a perfect square, [tex]\(\sqrt{7}\)[/tex] cannot be expressed as a fraction of two integers.
- Therefore, [tex]\(\sqrt{7}\)[/tex] is an irrational number.
#### Choice B: 0.8
- 0.8 is a terminating decimal.
- It can be expressed as the fraction [tex]\(\frac{4}{5}\)[/tex].
- Since it can be written as a fraction, 0.8 is a rational number.
#### Choice C: [tex]\(0.333\ldots\)[/tex] (repeating decimal)
- [tex]\(0.333\ldots\)[/tex] is a repeating decimal, which can be expressed as [tex]\(\frac{1}{3}\)[/tex].
- Since it can be written as a fraction, it is a rational number.
#### Choice D: [tex]\(0.020202\ldots\)[/tex] (repeating decimal)
- [tex]\(0.020202\ldots\)[/tex] is a repeating decimal, which can be written as [tex]\(\frac{2}{99}\)[/tex].
- Since it can be written as a fraction, it is a rational number.
### Conclusion
Based on the analysis above, the irrational number among the given choices is:
A. [tex]\(\sqrt{7}\)[/tex]
### Definition of Rational and Irrational Numbers
1. Rational Numbers: These can be expressed as the quotient or fraction [tex]\(\frac{p}{q}\)[/tex] of two integers [tex]\(p\)[/tex] and [tex]\(q\)[/tex], where [tex]\(q \neq 0\)[/tex]. Examples include 0.5, -3, [tex]\(\frac{3}{4}\)[/tex], etc.
2. Irrational Numbers: These cannot be expressed as a fraction of two integers. Their decimal expansions are non-repeating and non-terminating. Examples include [tex]\(\pi\)[/tex], [tex]\(e\)[/tex], and [tex]\(\sqrt{2}\)[/tex].
### Analyzing Each Choice
#### Choice A: [tex]\(\sqrt{7}\)[/tex]
- The square root of 7 is approximately 2.6457513110645907.
- Since 7 is not a perfect square, [tex]\(\sqrt{7}\)[/tex] cannot be expressed as a fraction of two integers.
- Therefore, [tex]\(\sqrt{7}\)[/tex] is an irrational number.
#### Choice B: 0.8
- 0.8 is a terminating decimal.
- It can be expressed as the fraction [tex]\(\frac{4}{5}\)[/tex].
- Since it can be written as a fraction, 0.8 is a rational number.
#### Choice C: [tex]\(0.333\ldots\)[/tex] (repeating decimal)
- [tex]\(0.333\ldots\)[/tex] is a repeating decimal, which can be expressed as [tex]\(\frac{1}{3}\)[/tex].
- Since it can be written as a fraction, it is a rational number.
#### Choice D: [tex]\(0.020202\ldots\)[/tex] (repeating decimal)
- [tex]\(0.020202\ldots\)[/tex] is a repeating decimal, which can be written as [tex]\(\frac{2}{99}\)[/tex].
- Since it can be written as a fraction, it is a rational number.
### Conclusion
Based on the analysis above, the irrational number among the given choices is:
A. [tex]\(\sqrt{7}\)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.