Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! The question requires us to determine which of the given polynomials is in standard form. A polynomial is in standard form when its terms are ordered from the highest degree to the lowest degree.
Let's examine each polynomial one by one:
### Polynomial 1: [tex]\(2 x^4 + 6 + 24 x^5\)[/tex]
- The terms are [tex]\( 24 x^5 \)[/tex], [tex]\( 2 x^4 \)[/tex], and [tex]\( 6 \)[/tex].
- The degrees of these terms are [tex]\( 5 \)[/tex], [tex]\( 4 \)[/tex], and [tex]\( 0 \)[/tex].
- Arranging from highest degree to lowest, we get [tex]\( 24 x^5 + 2 x^4 + 6 \)[/tex].
- This polynomial is not in standard form.
### Polynomial 2: [tex]\(6 x^2 - 9 x^3 + 12 x^4\)[/tex]
- The terms are [tex]\( 12 x^4 \)[/tex], [tex]\( -9 x^3 \)[/tex], and [tex]\( 6 x^2 \)[/tex].
- The degrees of these terms are [tex]\( 4 \)[/tex], [tex]\( 3 \)[/tex], and [tex]\( 2 \)[/tex].
- Arranging from highest degree to lowest, we get [tex]\( 12 x^4 - 9 x^3 + 6 x^2 \)[/tex].
- This polynomial is not in standard form.
### Polynomial 3: [tex]\(19 x + 6 x^2 + 2\)[/tex]
- The terms are [tex]\( 6 x^2 \)[/tex], [tex]\( 19 x \)[/tex], and [tex]\( 2 \)[/tex].
- The degrees of these terms are [tex]\( 2 \)[/tex], [tex]\( 1 \)[/tex], and [tex]\( 0 \)[/tex].
- Arranging from highest degree to lowest, we get [tex]\( 6 x^2 + 19 x + 2 \)[/tex].
- This polynomial is not in standard form.
### Polynomial 4: [tex]\(23 x^9 - 12 x^4 + 19\)[/tex]
- The terms are [tex]\( 23 x^9 \)[/tex], [tex]\( -12 x^4 \)[/tex], and [tex]\( 19 \)[/tex].
- The degrees of these terms are [tex]\( 9 \)[/tex], [tex]\( 4 \)[/tex], and [tex]\( 0 \)[/tex].
- Arranged from highest degree to lowest, it is already written as [tex]\( 23 x^9 - 12 x^4 + 19 \)[/tex].
### Conclusion
Among the given polynomials, only the fourth polynomial, [tex]\(23 x^9 - 12 x^4 + 19\)[/tex], is already in standard form where the terms are ordered from the highest degree to the lowest degree.
Thus, the polynomial that is in standard form is:
[tex]\[ 23 x^9 - 12 x^4 + 19 \][/tex]
And it is the fourth polynomial.
Let's examine each polynomial one by one:
### Polynomial 1: [tex]\(2 x^4 + 6 + 24 x^5\)[/tex]
- The terms are [tex]\( 24 x^5 \)[/tex], [tex]\( 2 x^4 \)[/tex], and [tex]\( 6 \)[/tex].
- The degrees of these terms are [tex]\( 5 \)[/tex], [tex]\( 4 \)[/tex], and [tex]\( 0 \)[/tex].
- Arranging from highest degree to lowest, we get [tex]\( 24 x^5 + 2 x^4 + 6 \)[/tex].
- This polynomial is not in standard form.
### Polynomial 2: [tex]\(6 x^2 - 9 x^3 + 12 x^4\)[/tex]
- The terms are [tex]\( 12 x^4 \)[/tex], [tex]\( -9 x^3 \)[/tex], and [tex]\( 6 x^2 \)[/tex].
- The degrees of these terms are [tex]\( 4 \)[/tex], [tex]\( 3 \)[/tex], and [tex]\( 2 \)[/tex].
- Arranging from highest degree to lowest, we get [tex]\( 12 x^4 - 9 x^3 + 6 x^2 \)[/tex].
- This polynomial is not in standard form.
### Polynomial 3: [tex]\(19 x + 6 x^2 + 2\)[/tex]
- The terms are [tex]\( 6 x^2 \)[/tex], [tex]\( 19 x \)[/tex], and [tex]\( 2 \)[/tex].
- The degrees of these terms are [tex]\( 2 \)[/tex], [tex]\( 1 \)[/tex], and [tex]\( 0 \)[/tex].
- Arranging from highest degree to lowest, we get [tex]\( 6 x^2 + 19 x + 2 \)[/tex].
- This polynomial is not in standard form.
### Polynomial 4: [tex]\(23 x^9 - 12 x^4 + 19\)[/tex]
- The terms are [tex]\( 23 x^9 \)[/tex], [tex]\( -12 x^4 \)[/tex], and [tex]\( 19 \)[/tex].
- The degrees of these terms are [tex]\( 9 \)[/tex], [tex]\( 4 \)[/tex], and [tex]\( 0 \)[/tex].
- Arranged from highest degree to lowest, it is already written as [tex]\( 23 x^9 - 12 x^4 + 19 \)[/tex].
### Conclusion
Among the given polynomials, only the fourth polynomial, [tex]\(23 x^9 - 12 x^4 + 19\)[/tex], is already in standard form where the terms are ordered from the highest degree to the lowest degree.
Thus, the polynomial that is in standard form is:
[tex]\[ 23 x^9 - 12 x^4 + 19 \][/tex]
And it is the fourth polynomial.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.