Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equation of the line that passes through the points [tex]\((-3, 8)\)[/tex] and [tex]\((-2, 3)\)[/tex], we need to determine two main components: the slope and the y-intercept.
### Step 1: Calculate the Slope (m)
The slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, [tex]\((x_1, y_1) = (-3, 8)\)[/tex] and [tex]\((x_2, y_2) = (-2, 3)\)[/tex]. Plugging in these coordinates:
[tex]\[ m = \frac{3 - 8}{-2 - (-3)} = \frac{3 - 8}{-2 + 3} = \frac{-5}{1} = -5 \][/tex]
### Step 2: Determine the Y-Intercept (b)
Once we have the slope, we can find the y-intercept by using the slope-intercept form of the equation of a line, which is [tex]\(y = mx + b\)[/tex]. We can rearrange this to solve for [tex]\(b\)[/tex]:
[tex]\[ b = y - mx \][/tex]
We can use either point to find the y-intercept. Let’s use the point [tex]\((-3, 8)\)[/tex]:
[tex]\[ b = 8 - (-5 \times -3) = 8 - 15 = -7 \][/tex]
### Step 3: Write the Equation in Slope-Intercept Form
Now that we have both the slope ([tex]\(m = -5\)[/tex]) and the y-intercept ([tex]\(b = -7\)[/tex]), we can write the equation of the line in slope-intercept form:
[tex]\[ y = -5x + (-7) \][/tex]
Simplifying the equation:
[tex]\[ y = -5x - 7 \][/tex]
Thus, the equation of the line through the points [tex]\((-3, 8)\)[/tex] and [tex]\((-2, 3)\)[/tex] is:
[tex]\[ \boxed{y = -5x - 7} \][/tex]
### Step 1: Calculate the Slope (m)
The slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, [tex]\((x_1, y_1) = (-3, 8)\)[/tex] and [tex]\((x_2, y_2) = (-2, 3)\)[/tex]. Plugging in these coordinates:
[tex]\[ m = \frac{3 - 8}{-2 - (-3)} = \frac{3 - 8}{-2 + 3} = \frac{-5}{1} = -5 \][/tex]
### Step 2: Determine the Y-Intercept (b)
Once we have the slope, we can find the y-intercept by using the slope-intercept form of the equation of a line, which is [tex]\(y = mx + b\)[/tex]. We can rearrange this to solve for [tex]\(b\)[/tex]:
[tex]\[ b = y - mx \][/tex]
We can use either point to find the y-intercept. Let’s use the point [tex]\((-3, 8)\)[/tex]:
[tex]\[ b = 8 - (-5 \times -3) = 8 - 15 = -7 \][/tex]
### Step 3: Write the Equation in Slope-Intercept Form
Now that we have both the slope ([tex]\(m = -5\)[/tex]) and the y-intercept ([tex]\(b = -7\)[/tex]), we can write the equation of the line in slope-intercept form:
[tex]\[ y = -5x + (-7) \][/tex]
Simplifying the equation:
[tex]\[ y = -5x - 7 \][/tex]
Thus, the equation of the line through the points [tex]\((-3, 8)\)[/tex] and [tex]\((-2, 3)\)[/tex] is:
[tex]\[ \boxed{y = -5x - 7} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.