Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the equation of the line that passes through the points [tex]\((-3, 8)\)[/tex] and [tex]\((-2, 3)\)[/tex], we need to determine two main components: the slope and the y-intercept.
### Step 1: Calculate the Slope (m)
The slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, [tex]\((x_1, y_1) = (-3, 8)\)[/tex] and [tex]\((x_2, y_2) = (-2, 3)\)[/tex]. Plugging in these coordinates:
[tex]\[ m = \frac{3 - 8}{-2 - (-3)} = \frac{3 - 8}{-2 + 3} = \frac{-5}{1} = -5 \][/tex]
### Step 2: Determine the Y-Intercept (b)
Once we have the slope, we can find the y-intercept by using the slope-intercept form of the equation of a line, which is [tex]\(y = mx + b\)[/tex]. We can rearrange this to solve for [tex]\(b\)[/tex]:
[tex]\[ b = y - mx \][/tex]
We can use either point to find the y-intercept. Let’s use the point [tex]\((-3, 8)\)[/tex]:
[tex]\[ b = 8 - (-5 \times -3) = 8 - 15 = -7 \][/tex]
### Step 3: Write the Equation in Slope-Intercept Form
Now that we have both the slope ([tex]\(m = -5\)[/tex]) and the y-intercept ([tex]\(b = -7\)[/tex]), we can write the equation of the line in slope-intercept form:
[tex]\[ y = -5x + (-7) \][/tex]
Simplifying the equation:
[tex]\[ y = -5x - 7 \][/tex]
Thus, the equation of the line through the points [tex]\((-3, 8)\)[/tex] and [tex]\((-2, 3)\)[/tex] is:
[tex]\[ \boxed{y = -5x - 7} \][/tex]
### Step 1: Calculate the Slope (m)
The slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, [tex]\((x_1, y_1) = (-3, 8)\)[/tex] and [tex]\((x_2, y_2) = (-2, 3)\)[/tex]. Plugging in these coordinates:
[tex]\[ m = \frac{3 - 8}{-2 - (-3)} = \frac{3 - 8}{-2 + 3} = \frac{-5}{1} = -5 \][/tex]
### Step 2: Determine the Y-Intercept (b)
Once we have the slope, we can find the y-intercept by using the slope-intercept form of the equation of a line, which is [tex]\(y = mx + b\)[/tex]. We can rearrange this to solve for [tex]\(b\)[/tex]:
[tex]\[ b = y - mx \][/tex]
We can use either point to find the y-intercept. Let’s use the point [tex]\((-3, 8)\)[/tex]:
[tex]\[ b = 8 - (-5 \times -3) = 8 - 15 = -7 \][/tex]
### Step 3: Write the Equation in Slope-Intercept Form
Now that we have both the slope ([tex]\(m = -5\)[/tex]) and the y-intercept ([tex]\(b = -7\)[/tex]), we can write the equation of the line in slope-intercept form:
[tex]\[ y = -5x + (-7) \][/tex]
Simplifying the equation:
[tex]\[ y = -5x - 7 \][/tex]
Thus, the equation of the line through the points [tex]\((-3, 8)\)[/tex] and [tex]\((-2, 3)\)[/tex] is:
[tex]\[ \boxed{y = -5x - 7} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.