Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Simplify the expression:

[tex]\[ \left(x+\frac{1}{x}\right)^2 \][/tex]


Sagot :

To simplify the expression [tex]\(\left(x + \frac{1}{x}\right)^2\)[/tex], we can expand it using the formula for the square of a binomial. Here's the detailed, step-by-step solution:

1. Write the expression:
[tex]\[ \left(x + \frac{1}{x}\right)^2 \][/tex]

2. Expand the square using the binomial theorem:
[tex]\[ (a + b)^2 = a^2 + 2ab + b^2 \][/tex]
Here, [tex]\(a = x\)[/tex] and [tex]\(b = \frac{1}{x}\)[/tex]. Applying the binomial theorem, we get:
[tex]\[ \left(x + \frac{1}{x}\right)^2 = x^2 + 2 \left(x \cdot \frac{1}{x}\right) + \left(\frac{1}{x}\right)^2 \][/tex]

3. Simplify each term:
- The first term is [tex]\(x^2\)[/tex].
- The second term is [tex]\(2 \left(x \cdot \frac{1}{x}\right)\)[/tex]. Since [tex]\(x \cdot \frac{1}{x} = 1\)[/tex], the second term simplifies to [tex]\(2 \cdot 1 = 2\)[/tex].
- The third term is [tex]\(\left(\frac{1}{x}\right)^2 = \frac{1}{x^2}\)[/tex].

4. Combine all the terms:
[tex]\[ x^2 + 2 + \frac{1}{x^2} \][/tex]

So, the expanded form of the expression [tex]\(\left(x + \frac{1}{x}\right)^2\)[/tex] is:
[tex]\[ x^2 + 2 + \frac{1}{x^2} \][/tex]

However, we can represent this in a different form by combining the terms under a single fraction, if desired:
[tex]\[ \frac{x^4 + 2x^2 + 1}{x^2} \][/tex]

This expression can be factored further as:
[tex]\[ \frac{(x^2 + 1)^2}{x^2} \][/tex]

Therefore, the simplified form of the expression [tex]\(\left(x + \frac{1}{x}\right)^2\)[/tex] is:
[tex]\[ \frac{(x^2 + 1)^2}{x^2} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.