Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which number, when added to [tex]\(\frac{1}{5}\)[/tex], results in a rational number, we need to recognize the properties of rational and irrational numbers.
1. Rational Numbers are numbers that can be expressed as the quotient of two integers (e.g., [tex]\(\frac{1}{5}\)[/tex] and [tex]\(-\frac{2}{3}\)[/tex]).
2. Irrational Numbers are numbers that cannot be expressed as the quotient of two integers (e.g., [tex]\(\pi\)[/tex], [tex]\(1.41421356 \ldots \text{(which approximates \(\sqrt{2}\)[/tex])}\), and [tex]\(\sqrt{11}\)[/tex]).
Adding two rational numbers always results in a rational number. Adding a rational number and an irrational number results in an irrational number.
Let's analyze each option:
### Option A: [tex]\(-\frac{2}{3}\)[/tex]
[tex]\[ \frac{1}{5} + \left( -\frac{2}{3} \right) = \frac{1}{5} - \frac{2}{3} = \frac{1 \cdot 3 - 2 \cdot 5}{5 \cdot 3} = \frac{3 - 10}{15} = \frac{-7}{15} \][/tex]
[tex]\(\frac{-7}{15}\)[/tex] is a rational number, as it is the quotient of two integers.
### Option B: [tex]\(\pi\)[/tex]
[tex]\[ \frac{1}{5} + \pi \text{ is irrational because }\pi \text{ is an irrational number.} \][/tex]
### Option C: [tex]\(-1.41421356 \ldots\)[/tex] (approximately [tex]\(-\sqrt{2}\)[/tex])
[tex]\[ \frac{1}{5} - 1.41421356 \ldots \text{ is irrational because } -\sqrt{2} \text{ is an irrational number.} \][/tex]
### Option D: [tex]\(\sqrt{11}\)[/tex]
[tex]\[ \frac{1}{5} + \sqrt{11} \text{ is irrational because } \sqrt{11} \text{ is an irrational number.} \][/tex]
Hence, the only option that produces a rational number when added to [tex]\(\frac{1}{5}\)[/tex] is:
[tex]\[ \boxed{-\frac{2}{3}} \][/tex]
1. Rational Numbers are numbers that can be expressed as the quotient of two integers (e.g., [tex]\(\frac{1}{5}\)[/tex] and [tex]\(-\frac{2}{3}\)[/tex]).
2. Irrational Numbers are numbers that cannot be expressed as the quotient of two integers (e.g., [tex]\(\pi\)[/tex], [tex]\(1.41421356 \ldots \text{(which approximates \(\sqrt{2}\)[/tex])}\), and [tex]\(\sqrt{11}\)[/tex]).
Adding two rational numbers always results in a rational number. Adding a rational number and an irrational number results in an irrational number.
Let's analyze each option:
### Option A: [tex]\(-\frac{2}{3}\)[/tex]
[tex]\[ \frac{1}{5} + \left( -\frac{2}{3} \right) = \frac{1}{5} - \frac{2}{3} = \frac{1 \cdot 3 - 2 \cdot 5}{5 \cdot 3} = \frac{3 - 10}{15} = \frac{-7}{15} \][/tex]
[tex]\(\frac{-7}{15}\)[/tex] is a rational number, as it is the quotient of two integers.
### Option B: [tex]\(\pi\)[/tex]
[tex]\[ \frac{1}{5} + \pi \text{ is irrational because }\pi \text{ is an irrational number.} \][/tex]
### Option C: [tex]\(-1.41421356 \ldots\)[/tex] (approximately [tex]\(-\sqrt{2}\)[/tex])
[tex]\[ \frac{1}{5} - 1.41421356 \ldots \text{ is irrational because } -\sqrt{2} \text{ is an irrational number.} \][/tex]
### Option D: [tex]\(\sqrt{11}\)[/tex]
[tex]\[ \frac{1}{5} + \sqrt{11} \text{ is irrational because } \sqrt{11} \text{ is an irrational number.} \][/tex]
Hence, the only option that produces a rational number when added to [tex]\(\frac{1}{5}\)[/tex] is:
[tex]\[ \boxed{-\frac{2}{3}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.