Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

### Review of Statistics

#### 3.13 Data on Fifth-Grade Test Scores (Reading and Mathematics) for 400 School Districts in Brussels

Given:
- Average score [tex]\(\bar{Y} = 712.1\)[/tex]
- Standard deviation [tex]\(s_Y = 23.2\)[/tex]

a. Construct a [tex]\(90\%\)[/tex] confidence interval for the mean test score in the population.

b. When the districts were divided into districts with small classes [tex]\((\ \textless \ 20\)[/tex] students per teacher) and large classes [tex]\((\geq 20\)[/tex] students per teacher), the following results were found:

[tex]\[
\begin{tabular}{|lccc|}
\hline
Class Size & Average Score \((\bar{Y})\) & Standard Deviation \((s_Y)\) & \(n\) \\
\hline
Small & 721.8 & 24.4 & 150 \\
\hline
Large & 710.9 & 20.6 & 250 \\
\hline
\end{tabular}
\][/tex]

Is there statistically significant evidence that the districts with smaller classes have higher average test scores? Explain.

Sagot :

Certainly! Let's tackle each of these parts step-by-step.

### Part (a)
We need to construct a 90% confidence interval for the mean test score in the population.

#### Step 1: Identify the given data
- Sample mean, [tex]\( \bar{Y} = 712.1 \)[/tex]
- Sample standard deviation, [tex]\( s_Y = 23.2 \)[/tex]
- Sample size, [tex]\( n = 400 \)[/tex]
- Confidence level, [tex]\( 90\% \)[/tex]

#### Step 2: Determine the critical value
For a 90% confidence interval, we use the z-distribution since the sample size is large ([tex]\( n > 30 \)[/tex]). The critical z-value [tex]\( z_{\alpha/2} \)[/tex] for a 90% confidence level is approximately 1.645.

#### Step 3: Calculate the standard error of the mean
The standard error of the mean (SEM) is given by:
[tex]\[ \text{SEM} = \frac{s_Y}{\sqrt{n}} = \frac{23.2}{\sqrt{400}} = 1.16 \][/tex]

#### Step 4: Calculate the margin of error
The margin of error (MOE) is given by:
[tex]\[ \text{MOE} = z_{\alpha/2} \times \text{SEM} = 1.645 \times 1.16 \approx 1.908 \][/tex]

#### Step 5: Construct the confidence interval
The confidence interval is calculated as:
[tex]\[ \left( \bar{Y} - \text{MOE}, \bar{Y} + \text{MOE} \right) = \left( 712.1 - 1.908, 712.1 + 1.908 \right) \][/tex]
[tex]\[ \text{Confidence Interval} = (710.192, 714.008) \][/tex]

### Part (b)
We need to determine if there is statistically significant evidence that districts with smaller classes have higher average test scores.

#### Step 1: Identify the given data
For small classes:
- Sample mean, [tex]\( \bar{Y}_{\text{small}} = 721.8 \)[/tex]
- Sample standard deviation, [tex]\( s_{Y,\text{small}} = 24.4 \)[/tex]
- Sample size, [tex]\( n_{\text{small}} = 150 \)[/tex]

For large classes:
- Sample mean, [tex]\( \bar{Y}_{\text{large}} = 710.9 \)[/tex]
- Sample standard deviation, [tex]\( s_{Y,\text{large}} = 20.6 \)[/tex]
- Sample size, [tex]\( n_{\text{large}} = 250 \)[/tex]

#### Step 2: Calculate the standard error of the difference in means
The standard error of the difference in means (SED) is calculated as:
[tex]\[ \text{SED} = \sqrt{ \left( \frac{s_{Y,\text{small}}^2}{n_{\text{small}}} \right) + \left( \frac{s_{Y,\text{large}}^2}{n_{\text{large}}} \right) } \][/tex]
[tex]\[ \text{SED} = \sqrt{ \left( \frac{24.4^2}{150} \right) + \left( \frac{20.6^2}{250} \right) } \approx 2.388 \][/tex]

#### Step 3: Calculate the test statistic (z-value)
The test statistic [tex]\( z \)[/tex] is calculated as:
[tex]\[ z = \frac{\left( \bar{Y}_{\text{small}} - \bar{Y}_{\text{large}} \right)}{\text{SED}} = \frac{(721.8 - 710.9)}{2.388} \approx 4.579 \][/tex]

#### Step 4: Calculate the p-value
For the calculated z-value, we find the corresponding p-value. Since we are performing a two-tailed test:
[tex]\[ p = 2 \times (1 - \Phi(|z|)) \][/tex]
where [tex]\( \Phi \)[/tex] is the cumulative distribution function of the standard normal distribution.

Given the z-value obtained, the p-value is very small ([tex]\( 4.672 \times 10^{-6} \)[/tex]).

#### Step 5: Determine statistical significance
Compare the p-value with the significance level [tex]\( \alpha = 0.10 \)[/tex]. Since the p-value is much smaller than [tex]\( \alpha \)[/tex], we reject the null hypothesis. This indicates:

There is statistically significant evidence that districts with smaller classes have higher average test scores.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.