Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's tackle each of these parts step-by-step.
### Part (a)
We need to construct a 90% confidence interval for the mean test score in the population.
#### Step 1: Identify the given data
- Sample mean, [tex]\( \bar{Y} = 712.1 \)[/tex]
- Sample standard deviation, [tex]\( s_Y = 23.2 \)[/tex]
- Sample size, [tex]\( n = 400 \)[/tex]
- Confidence level, [tex]\( 90\% \)[/tex]
#### Step 2: Determine the critical value
For a 90% confidence interval, we use the z-distribution since the sample size is large ([tex]\( n > 30 \)[/tex]). The critical z-value [tex]\( z_{\alpha/2} \)[/tex] for a 90% confidence level is approximately 1.645.
#### Step 3: Calculate the standard error of the mean
The standard error of the mean (SEM) is given by:
[tex]\[ \text{SEM} = \frac{s_Y}{\sqrt{n}} = \frac{23.2}{\sqrt{400}} = 1.16 \][/tex]
#### Step 4: Calculate the margin of error
The margin of error (MOE) is given by:
[tex]\[ \text{MOE} = z_{\alpha/2} \times \text{SEM} = 1.645 \times 1.16 \approx 1.908 \][/tex]
#### Step 5: Construct the confidence interval
The confidence interval is calculated as:
[tex]\[ \left( \bar{Y} - \text{MOE}, \bar{Y} + \text{MOE} \right) = \left( 712.1 - 1.908, 712.1 + 1.908 \right) \][/tex]
[tex]\[ \text{Confidence Interval} = (710.192, 714.008) \][/tex]
### Part (b)
We need to determine if there is statistically significant evidence that districts with smaller classes have higher average test scores.
#### Step 1: Identify the given data
For small classes:
- Sample mean, [tex]\( \bar{Y}_{\text{small}} = 721.8 \)[/tex]
- Sample standard deviation, [tex]\( s_{Y,\text{small}} = 24.4 \)[/tex]
- Sample size, [tex]\( n_{\text{small}} = 150 \)[/tex]
For large classes:
- Sample mean, [tex]\( \bar{Y}_{\text{large}} = 710.9 \)[/tex]
- Sample standard deviation, [tex]\( s_{Y,\text{large}} = 20.6 \)[/tex]
- Sample size, [tex]\( n_{\text{large}} = 250 \)[/tex]
#### Step 2: Calculate the standard error of the difference in means
The standard error of the difference in means (SED) is calculated as:
[tex]\[ \text{SED} = \sqrt{ \left( \frac{s_{Y,\text{small}}^2}{n_{\text{small}}} \right) + \left( \frac{s_{Y,\text{large}}^2}{n_{\text{large}}} \right) } \][/tex]
[tex]\[ \text{SED} = \sqrt{ \left( \frac{24.4^2}{150} \right) + \left( \frac{20.6^2}{250} \right) } \approx 2.388 \][/tex]
#### Step 3: Calculate the test statistic (z-value)
The test statistic [tex]\( z \)[/tex] is calculated as:
[tex]\[ z = \frac{\left( \bar{Y}_{\text{small}} - \bar{Y}_{\text{large}} \right)}{\text{SED}} = \frac{(721.8 - 710.9)}{2.388} \approx 4.579 \][/tex]
#### Step 4: Calculate the p-value
For the calculated z-value, we find the corresponding p-value. Since we are performing a two-tailed test:
[tex]\[ p = 2 \times (1 - \Phi(|z|)) \][/tex]
where [tex]\( \Phi \)[/tex] is the cumulative distribution function of the standard normal distribution.
Given the z-value obtained, the p-value is very small ([tex]\( 4.672 \times 10^{-6} \)[/tex]).
#### Step 5: Determine statistical significance
Compare the p-value with the significance level [tex]\( \alpha = 0.10 \)[/tex]. Since the p-value is much smaller than [tex]\( \alpha \)[/tex], we reject the null hypothesis. This indicates:
There is statistically significant evidence that districts with smaller classes have higher average test scores.
### Part (a)
We need to construct a 90% confidence interval for the mean test score in the population.
#### Step 1: Identify the given data
- Sample mean, [tex]\( \bar{Y} = 712.1 \)[/tex]
- Sample standard deviation, [tex]\( s_Y = 23.2 \)[/tex]
- Sample size, [tex]\( n = 400 \)[/tex]
- Confidence level, [tex]\( 90\% \)[/tex]
#### Step 2: Determine the critical value
For a 90% confidence interval, we use the z-distribution since the sample size is large ([tex]\( n > 30 \)[/tex]). The critical z-value [tex]\( z_{\alpha/2} \)[/tex] for a 90% confidence level is approximately 1.645.
#### Step 3: Calculate the standard error of the mean
The standard error of the mean (SEM) is given by:
[tex]\[ \text{SEM} = \frac{s_Y}{\sqrt{n}} = \frac{23.2}{\sqrt{400}} = 1.16 \][/tex]
#### Step 4: Calculate the margin of error
The margin of error (MOE) is given by:
[tex]\[ \text{MOE} = z_{\alpha/2} \times \text{SEM} = 1.645 \times 1.16 \approx 1.908 \][/tex]
#### Step 5: Construct the confidence interval
The confidence interval is calculated as:
[tex]\[ \left( \bar{Y} - \text{MOE}, \bar{Y} + \text{MOE} \right) = \left( 712.1 - 1.908, 712.1 + 1.908 \right) \][/tex]
[tex]\[ \text{Confidence Interval} = (710.192, 714.008) \][/tex]
### Part (b)
We need to determine if there is statistically significant evidence that districts with smaller classes have higher average test scores.
#### Step 1: Identify the given data
For small classes:
- Sample mean, [tex]\( \bar{Y}_{\text{small}} = 721.8 \)[/tex]
- Sample standard deviation, [tex]\( s_{Y,\text{small}} = 24.4 \)[/tex]
- Sample size, [tex]\( n_{\text{small}} = 150 \)[/tex]
For large classes:
- Sample mean, [tex]\( \bar{Y}_{\text{large}} = 710.9 \)[/tex]
- Sample standard deviation, [tex]\( s_{Y,\text{large}} = 20.6 \)[/tex]
- Sample size, [tex]\( n_{\text{large}} = 250 \)[/tex]
#### Step 2: Calculate the standard error of the difference in means
The standard error of the difference in means (SED) is calculated as:
[tex]\[ \text{SED} = \sqrt{ \left( \frac{s_{Y,\text{small}}^2}{n_{\text{small}}} \right) + \left( \frac{s_{Y,\text{large}}^2}{n_{\text{large}}} \right) } \][/tex]
[tex]\[ \text{SED} = \sqrt{ \left( \frac{24.4^2}{150} \right) + \left( \frac{20.6^2}{250} \right) } \approx 2.388 \][/tex]
#### Step 3: Calculate the test statistic (z-value)
The test statistic [tex]\( z \)[/tex] is calculated as:
[tex]\[ z = \frac{\left( \bar{Y}_{\text{small}} - \bar{Y}_{\text{large}} \right)}{\text{SED}} = \frac{(721.8 - 710.9)}{2.388} \approx 4.579 \][/tex]
#### Step 4: Calculate the p-value
For the calculated z-value, we find the corresponding p-value. Since we are performing a two-tailed test:
[tex]\[ p = 2 \times (1 - \Phi(|z|)) \][/tex]
where [tex]\( \Phi \)[/tex] is the cumulative distribution function of the standard normal distribution.
Given the z-value obtained, the p-value is very small ([tex]\( 4.672 \times 10^{-6} \)[/tex]).
#### Step 5: Determine statistical significance
Compare the p-value with the significance level [tex]\( \alpha = 0.10 \)[/tex]. Since the p-value is much smaller than [tex]\( \alpha \)[/tex], we reject the null hypothesis. This indicates:
There is statistically significant evidence that districts with smaller classes have higher average test scores.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.