Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Which number is rational?

A. [tex]$0.83587643 \ldots$[/tex]

B. [tex]$\sqrt{7}$[/tex]

C. [tex]$\pi$[/tex]

D. [tex]$0.333 \ldots$[/tex]


Sagot :

To determine which number is rational among the given options, let's analyze each one step-by-step:

A. [tex]\( 0.83587643 \ldots \)[/tex]
- This number appears to be a non-repeating, non-terminating decimal. Numbers of this form are typically irrational because they cannot be expressed as a fraction of two integers.

B. [tex]\( \sqrt{7} \)[/tex]
- The square root of a non-perfect square is known to be irrational. Since 7 is not a perfect square, [tex]\( \sqrt{7} \)[/tex] cannot be expressed as a fraction of two integers, hence it is irrational.

C. [tex]\( \pi \)[/tex]
- The number [tex]\( \pi \)[/tex] (pi) is a well-known irrational number. It is a non-repeating, non-terminating decimal and cannot be expressed as a fraction of two integers.

D. [tex]\( 0.333 \ldots \)[/tex]
- This number is a repeating decimal. Repeating decimals can be expressed as a fraction of two integers. For instance, [tex]\( 0.333 \ldots \)[/tex] can be written as [tex]\( \frac{1}{3} \)[/tex]. Therefore, it is a rational number.

Based on this analysis, the rational number among the given options is:

D. [tex]\( 0.333 \ldots \)[/tex]