Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Which number is rational?

A. [tex]$0.83587643 \ldots$[/tex]

B. [tex]$\sqrt{7}$[/tex]

C. [tex]$\pi$[/tex]

D. [tex]$0.333 \ldots$[/tex]


Sagot :

To determine which number is rational among the given options, let's analyze each one step-by-step:

A. [tex]\( 0.83587643 \ldots \)[/tex]
- This number appears to be a non-repeating, non-terminating decimal. Numbers of this form are typically irrational because they cannot be expressed as a fraction of two integers.

B. [tex]\( \sqrt{7} \)[/tex]
- The square root of a non-perfect square is known to be irrational. Since 7 is not a perfect square, [tex]\( \sqrt{7} \)[/tex] cannot be expressed as a fraction of two integers, hence it is irrational.

C. [tex]\( \pi \)[/tex]
- The number [tex]\( \pi \)[/tex] (pi) is a well-known irrational number. It is a non-repeating, non-terminating decimal and cannot be expressed as a fraction of two integers.

D. [tex]\( 0.333 \ldots \)[/tex]
- This number is a repeating decimal. Repeating decimals can be expressed as a fraction of two integers. For instance, [tex]\( 0.333 \ldots \)[/tex] can be written as [tex]\( \frac{1}{3} \)[/tex]. Therefore, it is a rational number.

Based on this analysis, the rational number among the given options is:

D. [tex]\( 0.333 \ldots \)[/tex]