Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve this step-by-step:
Given Data:
- Probability of Anna passing (P(A)) = 0.7
- Probability of both Anna and Rob passing (P(A ∩ R)) = 0.35
### Part (a): Probability of Rob passing his driving test
To find the probability of Rob passing (P(R)), we use the formula for the probability of both events happening.
[tex]\[ P(A \cap R) = P(A) \times P(R) \][/tex]
Given [tex]\( P(A \cap R) \)[/tex] and [tex]\( P(A) \)[/tex], we can rearrange the formula to solve for [tex]\( P(R) \)[/tex]:
[tex]\[ P(R) = \frac{P(A \cap R)}{P(A)} \][/tex]
Substituting the given values:
[tex]\[ P(R) = \frac{0.35}{0.7} = 0.5 \][/tex]
So, the probability of Rob passing his driving test is 0.5.
### Part (b): Probability of both Anna and Rob failing their driving tests
First, we need to find the probabilities of Anna and Rob failing individually.
- Probability of Anna failing (P(A')) is the complement of the probability of Anna passing:
[tex]\[ P(A') = 1 - P(A) \][/tex]
[tex]\[ P(A') = 1 - 0.7 = 0.3 \][/tex]
- Probability of Rob failing (P(R')) is the complement of the probability of Rob passing:
[tex]\[ P(R') = 1 - P(R) \][/tex]
[tex]\[ P(R') = 1 - 0.5 = 0.5 \][/tex]
Now, to find the probability of both Anna and Rob failing, we multiply their individual probabilities of failing:
[tex]\[ P(A' \cap R') = P(A') \times P(R') \][/tex]
[tex]\[ P(A' \cap R') = 0.3 \times 0.5 = 0.15 \][/tex]
So, the probability of both Anna and Rob failing their driving tests is 0.15.
Summary:
(a) The probability of Rob passing his driving test is 0.5.
(b) The probability of both Anna and Rob failing their driving tests is 0.15.
Given Data:
- Probability of Anna passing (P(A)) = 0.7
- Probability of both Anna and Rob passing (P(A ∩ R)) = 0.35
### Part (a): Probability of Rob passing his driving test
To find the probability of Rob passing (P(R)), we use the formula for the probability of both events happening.
[tex]\[ P(A \cap R) = P(A) \times P(R) \][/tex]
Given [tex]\( P(A \cap R) \)[/tex] and [tex]\( P(A) \)[/tex], we can rearrange the formula to solve for [tex]\( P(R) \)[/tex]:
[tex]\[ P(R) = \frac{P(A \cap R)}{P(A)} \][/tex]
Substituting the given values:
[tex]\[ P(R) = \frac{0.35}{0.7} = 0.5 \][/tex]
So, the probability of Rob passing his driving test is 0.5.
### Part (b): Probability of both Anna and Rob failing their driving tests
First, we need to find the probabilities of Anna and Rob failing individually.
- Probability of Anna failing (P(A')) is the complement of the probability of Anna passing:
[tex]\[ P(A') = 1 - P(A) \][/tex]
[tex]\[ P(A') = 1 - 0.7 = 0.3 \][/tex]
- Probability of Rob failing (P(R')) is the complement of the probability of Rob passing:
[tex]\[ P(R') = 1 - P(R) \][/tex]
[tex]\[ P(R') = 1 - 0.5 = 0.5 \][/tex]
Now, to find the probability of both Anna and Rob failing, we multiply their individual probabilities of failing:
[tex]\[ P(A' \cap R') = P(A') \times P(R') \][/tex]
[tex]\[ P(A' \cap R') = 0.3 \times 0.5 = 0.15 \][/tex]
So, the probability of both Anna and Rob failing their driving tests is 0.15.
Summary:
(a) The probability of Rob passing his driving test is 0.5.
(b) The probability of both Anna and Rob failing their driving tests is 0.15.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.