Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the simplest form of [tex]\(\sqrt{1,225}\)[/tex], we can proceed step by step.
1. Identify the number: We start with the number [tex]\(1,225\)[/tex].
2. Prime Factorization: We break [tex]\(1,225\)[/tex] down into its prime factors. For that, let's first recognize if [tex]\(1,225\)[/tex] is a perfect square of some integer [tex]\(n\)[/tex].
3. Check for smallest factors:
- Start with the smallest prime number [tex]\(2\)[/tex]. [tex]\(1,225\)[/tex] is odd, so it is not divisible by [tex]\(2\)[/tex].
- Next, try [tex]\(3\)[/tex]. Sum of digits of [tex]\(1,225\)[/tex] is [tex]\(1 + 2 + 2 + 5 = 10\)[/tex]. Since [tex]\(10\)[/tex] is not divisible by [tex]\(3\)[/tex], [tex]\(1,225\)[/tex] is not divisible by [tex]\(3\)[/tex].
- Next, try [tex]\(5\)[/tex]. The last digit of [tex]\(1,225\)[/tex] is [tex]\(5\)[/tex], so [tex]\(1,225\)[/tex] is divisible by [tex]\(5\)[/tex]. Dividing, we get [tex]\(1,225 \div 5 = 245\)[/tex].
4. Continue factorizing [tex]\(245\)[/tex]:
- [tex]\(245\)[/tex] ends in [tex]\(5\)[/tex], so it is again divisible by [tex]\(5\)[/tex]. Dividing, we get [tex]\(245 \div 5 = 49\)[/tex].
5. Factorize [tex]\(49\)[/tex]:
- Recognize that [tex]\(49\)[/tex] is [tex]\(7 \times 7\)[/tex].
6. Prime factors: Combining these steps, we have:
[tex]\[ 1,225 = 5 \times 5 \times 7 \times 7 \][/tex]
7. Simplify the square root: The formula for simplifying a square root calculation for a composite number [tex]\(n\)[/tex] given its prime factors is:
[tex]\[ \sqrt{n} = \sqrt{(a^2 \times b^2 \times ...)} = a \times b \times ... \][/tex]
Applying this to our factors, we get:
[tex]\[ \sqrt{1,225} = \sqrt{(5 \times 5) \times (7 \times 7)} = 5 \times 7 = 35 \][/tex]
Therefore, the simplest form of [tex]\(\sqrt{1,225}\)[/tex] is:
[tex]\[ \boxed{35} \][/tex]
1. Identify the number: We start with the number [tex]\(1,225\)[/tex].
2. Prime Factorization: We break [tex]\(1,225\)[/tex] down into its prime factors. For that, let's first recognize if [tex]\(1,225\)[/tex] is a perfect square of some integer [tex]\(n\)[/tex].
3. Check for smallest factors:
- Start with the smallest prime number [tex]\(2\)[/tex]. [tex]\(1,225\)[/tex] is odd, so it is not divisible by [tex]\(2\)[/tex].
- Next, try [tex]\(3\)[/tex]. Sum of digits of [tex]\(1,225\)[/tex] is [tex]\(1 + 2 + 2 + 5 = 10\)[/tex]. Since [tex]\(10\)[/tex] is not divisible by [tex]\(3\)[/tex], [tex]\(1,225\)[/tex] is not divisible by [tex]\(3\)[/tex].
- Next, try [tex]\(5\)[/tex]. The last digit of [tex]\(1,225\)[/tex] is [tex]\(5\)[/tex], so [tex]\(1,225\)[/tex] is divisible by [tex]\(5\)[/tex]. Dividing, we get [tex]\(1,225 \div 5 = 245\)[/tex].
4. Continue factorizing [tex]\(245\)[/tex]:
- [tex]\(245\)[/tex] ends in [tex]\(5\)[/tex], so it is again divisible by [tex]\(5\)[/tex]. Dividing, we get [tex]\(245 \div 5 = 49\)[/tex].
5. Factorize [tex]\(49\)[/tex]:
- Recognize that [tex]\(49\)[/tex] is [tex]\(7 \times 7\)[/tex].
6. Prime factors: Combining these steps, we have:
[tex]\[ 1,225 = 5 \times 5 \times 7 \times 7 \][/tex]
7. Simplify the square root: The formula for simplifying a square root calculation for a composite number [tex]\(n\)[/tex] given its prime factors is:
[tex]\[ \sqrt{n} = \sqrt{(a^2 \times b^2 \times ...)} = a \times b \times ... \][/tex]
Applying this to our factors, we get:
[tex]\[ \sqrt{1,225} = \sqrt{(5 \times 5) \times (7 \times 7)} = 5 \times 7 = 35 \][/tex]
Therefore, the simplest form of [tex]\(\sqrt{1,225}\)[/tex] is:
[tex]\[ \boxed{35} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.