Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which statement best describes the function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] where [tex]\( k \)[/tex] is a constant such that [tex]\( k > 1 \)[/tex] and [tex]\( x \geq -2 \)[/tex], let's analyze the behavior of the function step-by-step.
1. Understanding the Function:
[tex]\[ f(x) = k^{-\sqrt{x+2}} \][/tex]
Here, [tex]\( k \)[/tex] is a positive constant greater than 1, and we are considering [tex]\( x \geq -2 \)[/tex].
2. Analyzing the Exponent:
For [tex]\( x \geq -2 \)[/tex], [tex]\( \sqrt{x+2} \)[/tex] will always yield non-negative values (since the square root of a non-negative number is also non-negative).
3. Behavior of [tex]\( \sqrt{x+2} \)[/tex]:
As [tex]\( x \)[/tex] increases from [tex]\(-2\)[/tex], the value of [tex]\( \sqrt{x+2} \)[/tex] also increases. For example:
- When [tex]\( x = -2 \)[/tex], [tex]\( \sqrt{x+2} = 0 \)[/tex].
- When [tex]\( x = 0 \)[/tex], [tex]\( \sqrt{x+2} = \sqrt{2} \)[/tex].
- When [tex]\( x \)[/tex] becomes very large, [tex]\( \sqrt{x+2} \)[/tex] also becomes very large.
4. Impact on [tex]\( k^{-\sqrt{x+2}} \)[/tex]:
Given that [tex]\( k > 1 \)[/tex], any positive exponent will result in a number greater than 1. When that exponent is negative, we have a fraction between 0 and 1. Specifically:
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x+2} \)[/tex] becomes larger.
- The exponent [tex]\( -\sqrt{x+2} \)[/tex] becomes more negative, making [tex]\( k^{-\sqrt{x+2}} \)[/tex] a smaller positive number.
5. Exponential Decay:
The function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] will exhibit exponential decay because as [tex]\( x \)[/tex] increases, [tex]\( -\sqrt{x+2} \)[/tex] decreases (becomes more negative), and [tex]\( k \)[/tex] to the power of this more negative exponent yields smaller and smaller positive values.
In conclusion, the function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] with [tex]\( k > 1 \)[/tex] and [tex]\( x \geq -2 \)[/tex] is best described by statement A:
A. It is an exponential decay function.
1. Understanding the Function:
[tex]\[ f(x) = k^{-\sqrt{x+2}} \][/tex]
Here, [tex]\( k \)[/tex] is a positive constant greater than 1, and we are considering [tex]\( x \geq -2 \)[/tex].
2. Analyzing the Exponent:
For [tex]\( x \geq -2 \)[/tex], [tex]\( \sqrt{x+2} \)[/tex] will always yield non-negative values (since the square root of a non-negative number is also non-negative).
3. Behavior of [tex]\( \sqrt{x+2} \)[/tex]:
As [tex]\( x \)[/tex] increases from [tex]\(-2\)[/tex], the value of [tex]\( \sqrt{x+2} \)[/tex] also increases. For example:
- When [tex]\( x = -2 \)[/tex], [tex]\( \sqrt{x+2} = 0 \)[/tex].
- When [tex]\( x = 0 \)[/tex], [tex]\( \sqrt{x+2} = \sqrt{2} \)[/tex].
- When [tex]\( x \)[/tex] becomes very large, [tex]\( \sqrt{x+2} \)[/tex] also becomes very large.
4. Impact on [tex]\( k^{-\sqrt{x+2}} \)[/tex]:
Given that [tex]\( k > 1 \)[/tex], any positive exponent will result in a number greater than 1. When that exponent is negative, we have a fraction between 0 and 1. Specifically:
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x+2} \)[/tex] becomes larger.
- The exponent [tex]\( -\sqrt{x+2} \)[/tex] becomes more negative, making [tex]\( k^{-\sqrt{x+2}} \)[/tex] a smaller positive number.
5. Exponential Decay:
The function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] will exhibit exponential decay because as [tex]\( x \)[/tex] increases, [tex]\( -\sqrt{x+2} \)[/tex] decreases (becomes more negative), and [tex]\( k \)[/tex] to the power of this more negative exponent yields smaller and smaller positive values.
In conclusion, the function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] with [tex]\( k > 1 \)[/tex] and [tex]\( x \geq -2 \)[/tex] is best described by statement A:
A. It is an exponential decay function.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.