Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which statement best describes the function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] where [tex]\( k \)[/tex] is a constant such that [tex]\( k > 1 \)[/tex] and [tex]\( x \geq -2 \)[/tex], let's analyze the behavior of the function step-by-step.
1. Understanding the Function:
[tex]\[ f(x) = k^{-\sqrt{x+2}} \][/tex]
Here, [tex]\( k \)[/tex] is a positive constant greater than 1, and we are considering [tex]\( x \geq -2 \)[/tex].
2. Analyzing the Exponent:
For [tex]\( x \geq -2 \)[/tex], [tex]\( \sqrt{x+2} \)[/tex] will always yield non-negative values (since the square root of a non-negative number is also non-negative).
3. Behavior of [tex]\( \sqrt{x+2} \)[/tex]:
As [tex]\( x \)[/tex] increases from [tex]\(-2\)[/tex], the value of [tex]\( \sqrt{x+2} \)[/tex] also increases. For example:
- When [tex]\( x = -2 \)[/tex], [tex]\( \sqrt{x+2} = 0 \)[/tex].
- When [tex]\( x = 0 \)[/tex], [tex]\( \sqrt{x+2} = \sqrt{2} \)[/tex].
- When [tex]\( x \)[/tex] becomes very large, [tex]\( \sqrt{x+2} \)[/tex] also becomes very large.
4. Impact on [tex]\( k^{-\sqrt{x+2}} \)[/tex]:
Given that [tex]\( k > 1 \)[/tex], any positive exponent will result in a number greater than 1. When that exponent is negative, we have a fraction between 0 and 1. Specifically:
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x+2} \)[/tex] becomes larger.
- The exponent [tex]\( -\sqrt{x+2} \)[/tex] becomes more negative, making [tex]\( k^{-\sqrt{x+2}} \)[/tex] a smaller positive number.
5. Exponential Decay:
The function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] will exhibit exponential decay because as [tex]\( x \)[/tex] increases, [tex]\( -\sqrt{x+2} \)[/tex] decreases (becomes more negative), and [tex]\( k \)[/tex] to the power of this more negative exponent yields smaller and smaller positive values.
In conclusion, the function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] with [tex]\( k > 1 \)[/tex] and [tex]\( x \geq -2 \)[/tex] is best described by statement A:
A. It is an exponential decay function.
1. Understanding the Function:
[tex]\[ f(x) = k^{-\sqrt{x+2}} \][/tex]
Here, [tex]\( k \)[/tex] is a positive constant greater than 1, and we are considering [tex]\( x \geq -2 \)[/tex].
2. Analyzing the Exponent:
For [tex]\( x \geq -2 \)[/tex], [tex]\( \sqrt{x+2} \)[/tex] will always yield non-negative values (since the square root of a non-negative number is also non-negative).
3. Behavior of [tex]\( \sqrt{x+2} \)[/tex]:
As [tex]\( x \)[/tex] increases from [tex]\(-2\)[/tex], the value of [tex]\( \sqrt{x+2} \)[/tex] also increases. For example:
- When [tex]\( x = -2 \)[/tex], [tex]\( \sqrt{x+2} = 0 \)[/tex].
- When [tex]\( x = 0 \)[/tex], [tex]\( \sqrt{x+2} = \sqrt{2} \)[/tex].
- When [tex]\( x \)[/tex] becomes very large, [tex]\( \sqrt{x+2} \)[/tex] also becomes very large.
4. Impact on [tex]\( k^{-\sqrt{x+2}} \)[/tex]:
Given that [tex]\( k > 1 \)[/tex], any positive exponent will result in a number greater than 1. When that exponent is negative, we have a fraction between 0 and 1. Specifically:
- As [tex]\( x \)[/tex] increases, [tex]\( \sqrt{x+2} \)[/tex] becomes larger.
- The exponent [tex]\( -\sqrt{x+2} \)[/tex] becomes more negative, making [tex]\( k^{-\sqrt{x+2}} \)[/tex] a smaller positive number.
5. Exponential Decay:
The function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] will exhibit exponential decay because as [tex]\( x \)[/tex] increases, [tex]\( -\sqrt{x+2} \)[/tex] decreases (becomes more negative), and [tex]\( k \)[/tex] to the power of this more negative exponent yields smaller and smaller positive values.
In conclusion, the function [tex]\( f(x) = k^{-\sqrt{x+2}} \)[/tex] with [tex]\( k > 1 \)[/tex] and [tex]\( x \geq -2 \)[/tex] is best described by statement A:
A. It is an exponential decay function.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.