Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which expressions for slope are incorrect, let's carefully analyze each option given:
A. Change in the dependent variable relative to change in the independent variable:
This is a correct description of the slope. The slope of a line in a coordinate plane is defined as the rate of change of the dependent variable (usually [tex]\( y \)[/tex]) with respect to the independent variable (usually [tex]\( x \)[/tex]).
B. run:
This is incorrect. 'Run' specifically refers to the horizontal change (change in [tex]\( x \)[/tex]-value) between two points on a graph. Slope requires both the rise (change in [tex]\( y \)[/tex]-value) and the run (change in [tex]\( x \)[/tex]-value), not just the run alone.
C. [tex]\(\frac{\Delta y}{\Delta x}\)[/tex]:
This is correct. The slope [tex]\( m \)[/tex] is mathematically expressed as [tex]\(\frac{\Delta y}{\Delta x}\)[/tex], where [tex]\(\Delta y\)[/tex] is the change in the [tex]\( y \)[/tex]-values and [tex]\(\Delta x\)[/tex] is the change in the [tex]\( x \)[/tex]-values.
D. [tex]\(\frac{x_2 - x_1}{y_2 - y_1}\)[/tex]:
This is incorrect. The formula given here seems to be a ratio, however, it is inverted. The correct slope formula should be [tex]\(\frac{y_2 - y_1}{x_2 - x_1}\)[/tex]. This version would not yield the correct value for slope.
From our analysis, the incorrect expressions for slope are:
- B (run)
- D ([tex]\(\frac{x_2 - x_1}{y_2 - y_1}\)[/tex])
Thus, the answer is:
[2, 4]
A. Change in the dependent variable relative to change in the independent variable:
This is a correct description of the slope. The slope of a line in a coordinate plane is defined as the rate of change of the dependent variable (usually [tex]\( y \)[/tex]) with respect to the independent variable (usually [tex]\( x \)[/tex]).
B. run:
This is incorrect. 'Run' specifically refers to the horizontal change (change in [tex]\( x \)[/tex]-value) between two points on a graph. Slope requires both the rise (change in [tex]\( y \)[/tex]-value) and the run (change in [tex]\( x \)[/tex]-value), not just the run alone.
C. [tex]\(\frac{\Delta y}{\Delta x}\)[/tex]:
This is correct. The slope [tex]\( m \)[/tex] is mathematically expressed as [tex]\(\frac{\Delta y}{\Delta x}\)[/tex], where [tex]\(\Delta y\)[/tex] is the change in the [tex]\( y \)[/tex]-values and [tex]\(\Delta x\)[/tex] is the change in the [tex]\( x \)[/tex]-values.
D. [tex]\(\frac{x_2 - x_1}{y_2 - y_1}\)[/tex]:
This is incorrect. The formula given here seems to be a ratio, however, it is inverted. The correct slope formula should be [tex]\(\frac{y_2 - y_1}{x_2 - x_1}\)[/tex]. This version would not yield the correct value for slope.
From our analysis, the incorrect expressions for slope are:
- B (run)
- D ([tex]\(\frac{x_2 - x_1}{y_2 - y_1}\)[/tex])
Thus, the answer is:
[2, 4]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.