Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which expressions for slope are incorrect, let's carefully analyze each option given:
A. Change in the dependent variable relative to change in the independent variable:
This is a correct description of the slope. The slope of a line in a coordinate plane is defined as the rate of change of the dependent variable (usually [tex]\( y \)[/tex]) with respect to the independent variable (usually [tex]\( x \)[/tex]).
B. run:
This is incorrect. 'Run' specifically refers to the horizontal change (change in [tex]\( x \)[/tex]-value) between two points on a graph. Slope requires both the rise (change in [tex]\( y \)[/tex]-value) and the run (change in [tex]\( x \)[/tex]-value), not just the run alone.
C. [tex]\(\frac{\Delta y}{\Delta x}\)[/tex]:
This is correct. The slope [tex]\( m \)[/tex] is mathematically expressed as [tex]\(\frac{\Delta y}{\Delta x}\)[/tex], where [tex]\(\Delta y\)[/tex] is the change in the [tex]\( y \)[/tex]-values and [tex]\(\Delta x\)[/tex] is the change in the [tex]\( x \)[/tex]-values.
D. [tex]\(\frac{x_2 - x_1}{y_2 - y_1}\)[/tex]:
This is incorrect. The formula given here seems to be a ratio, however, it is inverted. The correct slope formula should be [tex]\(\frac{y_2 - y_1}{x_2 - x_1}\)[/tex]. This version would not yield the correct value for slope.
From our analysis, the incorrect expressions for slope are:
- B (run)
- D ([tex]\(\frac{x_2 - x_1}{y_2 - y_1}\)[/tex])
Thus, the answer is:
[2, 4]
A. Change in the dependent variable relative to change in the independent variable:
This is a correct description of the slope. The slope of a line in a coordinate plane is defined as the rate of change of the dependent variable (usually [tex]\( y \)[/tex]) with respect to the independent variable (usually [tex]\( x \)[/tex]).
B. run:
This is incorrect. 'Run' specifically refers to the horizontal change (change in [tex]\( x \)[/tex]-value) between two points on a graph. Slope requires both the rise (change in [tex]\( y \)[/tex]-value) and the run (change in [tex]\( x \)[/tex]-value), not just the run alone.
C. [tex]\(\frac{\Delta y}{\Delta x}\)[/tex]:
This is correct. The slope [tex]\( m \)[/tex] is mathematically expressed as [tex]\(\frac{\Delta y}{\Delta x}\)[/tex], where [tex]\(\Delta y\)[/tex] is the change in the [tex]\( y \)[/tex]-values and [tex]\(\Delta x\)[/tex] is the change in the [tex]\( x \)[/tex]-values.
D. [tex]\(\frac{x_2 - x_1}{y_2 - y_1}\)[/tex]:
This is incorrect. The formula given here seems to be a ratio, however, it is inverted. The correct slope formula should be [tex]\(\frac{y_2 - y_1}{x_2 - x_1}\)[/tex]. This version would not yield the correct value for slope.
From our analysis, the incorrect expressions for slope are:
- B (run)
- D ([tex]\(\frac{x_2 - x_1}{y_2 - y_1}\)[/tex])
Thus, the answer is:
[2, 4]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.