At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the inequality that describes when the expected value of card [tex]\( A \)[/tex] is at least the predicted value of card [tex]\( B \)[/tex], we need to compare their future values after [tex]\( t \)[/tex] years.
### Step-by-Step Solution:
1. Identify the Current Values and Growth Rates:
- Current value of baseball card [tex]\( A \)[/tex] is \[tex]$50. - The value of card \( A \) increases exponentially by a factor of \( 1.06 \) every 2 years. - Current value of baseball card \( B \) is \$[/tex]40.
- The value of card [tex]\( B \)[/tex] increases exponentially by a factor of [tex]\( 1.08 \)[/tex] every 2 years.
2. Express the Future Values:
- The future value of card [tex]\( A \)[/tex] after [tex]\( t \)[/tex] years will multiply by [tex]\( 1.06 \)[/tex] every 2 years. Hence, after [tex]\( t \)[/tex] years, the value of card [tex]\( A \)[/tex] will be:
[tex]\[ 50 \times (1.06)^{\frac{t}{2}} \][/tex]
- Similarly, the future value of card [tex]\( B \)[/tex] after [tex]\( t \)[/tex] years will multiply by [tex]\( 1.08 \)[/tex] every 2 years. Hence, after [tex]\( t \)[/tex] years, the value of card [tex]\( B \)[/tex] will be:
[tex]\[ 40 \times (1.08)^{\frac{t}{2}} \][/tex]
3. Formuate the Inequality:
To find the time [tex]\( t \)[/tex] when the value of card [tex]\( A \)[/tex] is at least the value of card [tex]\( B \)[/tex], we need the future value of card [tex]\( A \)[/tex] to be greater than or equal to the future value of card [tex]\( B \)[/tex]. Thus, we set up the inequality:
[tex]\[ 50 \times (1.06)^{\frac{t}{2}} \geq 40 \times (1.08)^{\frac{t}{2}} \][/tex]
4. Simplify the Exponents:
Since the exponential factors are for every 2 years, we rephrase the inequality in terms of [tex]\( 2t \)[/tex]:
[tex]\[ 50 \times (1.06)^{2t} \geq 40 \times (1.08)^{2t} \][/tex]
5. Identify the Correct Option:
Therefore, the inequality can be written as:
[tex]\[ 50(1.06)^{2t} \geq 40(1.08)^{2t} \][/tex]
After comparing this to the provided options, we see that the correct inequality is found in option [tex]\( A \)[/tex]:
[tex]\[ 50(1.06)^{2t} \geq 40(1.08)^{2t} \][/tex]
Thus, the correct inequality and answer is:
Option A: [tex]\( 50(1.06)^{2t} \geq 40(1.08)^{2t} \)[/tex].
### Step-by-Step Solution:
1. Identify the Current Values and Growth Rates:
- Current value of baseball card [tex]\( A \)[/tex] is \[tex]$50. - The value of card \( A \) increases exponentially by a factor of \( 1.06 \) every 2 years. - Current value of baseball card \( B \) is \$[/tex]40.
- The value of card [tex]\( B \)[/tex] increases exponentially by a factor of [tex]\( 1.08 \)[/tex] every 2 years.
2. Express the Future Values:
- The future value of card [tex]\( A \)[/tex] after [tex]\( t \)[/tex] years will multiply by [tex]\( 1.06 \)[/tex] every 2 years. Hence, after [tex]\( t \)[/tex] years, the value of card [tex]\( A \)[/tex] will be:
[tex]\[ 50 \times (1.06)^{\frac{t}{2}} \][/tex]
- Similarly, the future value of card [tex]\( B \)[/tex] after [tex]\( t \)[/tex] years will multiply by [tex]\( 1.08 \)[/tex] every 2 years. Hence, after [tex]\( t \)[/tex] years, the value of card [tex]\( B \)[/tex] will be:
[tex]\[ 40 \times (1.08)^{\frac{t}{2}} \][/tex]
3. Formuate the Inequality:
To find the time [tex]\( t \)[/tex] when the value of card [tex]\( A \)[/tex] is at least the value of card [tex]\( B \)[/tex], we need the future value of card [tex]\( A \)[/tex] to be greater than or equal to the future value of card [tex]\( B \)[/tex]. Thus, we set up the inequality:
[tex]\[ 50 \times (1.06)^{\frac{t}{2}} \geq 40 \times (1.08)^{\frac{t}{2}} \][/tex]
4. Simplify the Exponents:
Since the exponential factors are for every 2 years, we rephrase the inequality in terms of [tex]\( 2t \)[/tex]:
[tex]\[ 50 \times (1.06)^{2t} \geq 40 \times (1.08)^{2t} \][/tex]
5. Identify the Correct Option:
Therefore, the inequality can be written as:
[tex]\[ 50(1.06)^{2t} \geq 40(1.08)^{2t} \][/tex]
After comparing this to the provided options, we see that the correct inequality is found in option [tex]\( A \)[/tex]:
[tex]\[ 50(1.06)^{2t} \geq 40(1.08)^{2t} \][/tex]
Thus, the correct inequality and answer is:
Option A: [tex]\( 50(1.06)^{2t} \geq 40(1.08)^{2t} \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.