Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the inequality that describes when the expected value of card [tex]\( A \)[/tex] is at least the predicted value of card [tex]\( B \)[/tex], we need to compare their future values after [tex]\( t \)[/tex] years.
### Step-by-Step Solution:
1. Identify the Current Values and Growth Rates:
- Current value of baseball card [tex]\( A \)[/tex] is \[tex]$50. - The value of card \( A \) increases exponentially by a factor of \( 1.06 \) every 2 years. - Current value of baseball card \( B \) is \$[/tex]40.
- The value of card [tex]\( B \)[/tex] increases exponentially by a factor of [tex]\( 1.08 \)[/tex] every 2 years.
2. Express the Future Values:
- The future value of card [tex]\( A \)[/tex] after [tex]\( t \)[/tex] years will multiply by [tex]\( 1.06 \)[/tex] every 2 years. Hence, after [tex]\( t \)[/tex] years, the value of card [tex]\( A \)[/tex] will be:
[tex]\[ 50 \times (1.06)^{\frac{t}{2}} \][/tex]
- Similarly, the future value of card [tex]\( B \)[/tex] after [tex]\( t \)[/tex] years will multiply by [tex]\( 1.08 \)[/tex] every 2 years. Hence, after [tex]\( t \)[/tex] years, the value of card [tex]\( B \)[/tex] will be:
[tex]\[ 40 \times (1.08)^{\frac{t}{2}} \][/tex]
3. Formuate the Inequality:
To find the time [tex]\( t \)[/tex] when the value of card [tex]\( A \)[/tex] is at least the value of card [tex]\( B \)[/tex], we need the future value of card [tex]\( A \)[/tex] to be greater than or equal to the future value of card [tex]\( B \)[/tex]. Thus, we set up the inequality:
[tex]\[ 50 \times (1.06)^{\frac{t}{2}} \geq 40 \times (1.08)^{\frac{t}{2}} \][/tex]
4. Simplify the Exponents:
Since the exponential factors are for every 2 years, we rephrase the inequality in terms of [tex]\( 2t \)[/tex]:
[tex]\[ 50 \times (1.06)^{2t} \geq 40 \times (1.08)^{2t} \][/tex]
5. Identify the Correct Option:
Therefore, the inequality can be written as:
[tex]\[ 50(1.06)^{2t} \geq 40(1.08)^{2t} \][/tex]
After comparing this to the provided options, we see that the correct inequality is found in option [tex]\( A \)[/tex]:
[tex]\[ 50(1.06)^{2t} \geq 40(1.08)^{2t} \][/tex]
Thus, the correct inequality and answer is:
Option A: [tex]\( 50(1.06)^{2t} \geq 40(1.08)^{2t} \)[/tex].
### Step-by-Step Solution:
1. Identify the Current Values and Growth Rates:
- Current value of baseball card [tex]\( A \)[/tex] is \[tex]$50. - The value of card \( A \) increases exponentially by a factor of \( 1.06 \) every 2 years. - Current value of baseball card \( B \) is \$[/tex]40.
- The value of card [tex]\( B \)[/tex] increases exponentially by a factor of [tex]\( 1.08 \)[/tex] every 2 years.
2. Express the Future Values:
- The future value of card [tex]\( A \)[/tex] after [tex]\( t \)[/tex] years will multiply by [tex]\( 1.06 \)[/tex] every 2 years. Hence, after [tex]\( t \)[/tex] years, the value of card [tex]\( A \)[/tex] will be:
[tex]\[ 50 \times (1.06)^{\frac{t}{2}} \][/tex]
- Similarly, the future value of card [tex]\( B \)[/tex] after [tex]\( t \)[/tex] years will multiply by [tex]\( 1.08 \)[/tex] every 2 years. Hence, after [tex]\( t \)[/tex] years, the value of card [tex]\( B \)[/tex] will be:
[tex]\[ 40 \times (1.08)^{\frac{t}{2}} \][/tex]
3. Formuate the Inequality:
To find the time [tex]\( t \)[/tex] when the value of card [tex]\( A \)[/tex] is at least the value of card [tex]\( B \)[/tex], we need the future value of card [tex]\( A \)[/tex] to be greater than or equal to the future value of card [tex]\( B \)[/tex]. Thus, we set up the inequality:
[tex]\[ 50 \times (1.06)^{\frac{t}{2}} \geq 40 \times (1.08)^{\frac{t}{2}} \][/tex]
4. Simplify the Exponents:
Since the exponential factors are for every 2 years, we rephrase the inequality in terms of [tex]\( 2t \)[/tex]:
[tex]\[ 50 \times (1.06)^{2t} \geq 40 \times (1.08)^{2t} \][/tex]
5. Identify the Correct Option:
Therefore, the inequality can be written as:
[tex]\[ 50(1.06)^{2t} \geq 40(1.08)^{2t} \][/tex]
After comparing this to the provided options, we see that the correct inequality is found in option [tex]\( A \)[/tex]:
[tex]\[ 50(1.06)^{2t} \geq 40(1.08)^{2t} \][/tex]
Thus, the correct inequality and answer is:
Option A: [tex]\( 50(1.06)^{2t} \geq 40(1.08)^{2t} \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.