Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Which of the following could be the graph of the line [tex]$y = -3x - 2$[/tex]?

A.
B.

Sagot :

To determine which graph corresponds to the equation [tex]\( y = -3x - 2 \)[/tex], we'll follow these steps:

### Step-by-Step Solution:

1. Understand the Slope-Intercept Form:
The given equation is in the slope-intercept form, [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the y-intercept.

2. Identify the Slope and Y-Intercept:
- The slope [tex]\( m \)[/tex] is [tex]\(-3\)[/tex]. This means that for every unit increase in [tex]\( x \)[/tex], [tex]\( y \)[/tex] decreases by 3 units.
- The y-intercept [tex]\( b \)[/tex] is [tex]\(-2\)[/tex]. This means the line crosses the y-axis at [tex]\( (0, -2) \)[/tex].

3. Plot the Y-Intercept:
Start by plotting the y-intercept on the graph.
- This point is [tex]\( (0, -2) \)[/tex].

4. Use the Slope to Find Another Point:
From the y-intercept [tex]\( (0, -2) \)[/tex], use the slope to find another point on the line.
- Since the slope is [tex]\(-3\)[/tex], from [tex]\( (0, -2) \)[/tex], you move 1 unit to the right (positive [tex]\( x \)[/tex]-direction) and 3 units down (negative [tex]\( y \)[/tex]-direction).
- This gives you the second point [tex]\((1, -5)\)[/tex].

5. Draw the Line:
Now draw a straight line through the points [tex]\( (0, -2) \)[/tex] and [tex]\( (1, -5) \)[/tex].

### Verifying with Graphs:

- Graph A:
- Check if the line in Graph A passes through [tex]\( (0, -2) \)[/tex] and follows a slope of [tex]\(-3\)[/tex].

- Graph B:
- Check if the line in Graph B passes through [tex]\( (0, -2) \)[/tex] and follows a slope of [tex]\(-3\)[/tex].

### Conclusion:
- If Graph A shows a line passing through [tex]\( (0, -2) \)[/tex] and [tex]\( (1, -5) \)[/tex] with a slope of [tex]\(-3\)[/tex], then it corresponds to the equation [tex]\( y = -3x - 2 \)[/tex].
- If Graph B shows these characteristics, then Graph B is the correct graph.

The correct graph is the one that features a line passing through the points identified with the right slope (-3) and y-intercept (-2).