Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the electric force acting between two charges, we use Coulomb's Law, which states that the electric force ([tex]\(F_e\)[/tex]) between two point charges is given by:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = -0.0085 \, \text{C} \)[/tex]
- [tex]\( q_2 = -0.0025 \, \text{C} \)[/tex]
- [tex]\( r = 0.0020 \, \text{m} \)[/tex]
Let's plug these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) (-0.0085) (-0.0025)}{(0.0020)^2} \][/tex]
First, we calculate the numerator:
[tex]\[ 9.00 \times 10^9 \times -0.0085 \times -0.0025 \][/tex]
The product of the charges ([tex]\(-0.0085 \times -0.0025\)[/tex]) is:
[tex]\[ -0.0085 \times -0.0025 = 2.125 \times 10^{-5} \][/tex]
Therefore, the numerator becomes:
[tex]\[ 9.00 \times 10^9 \times 2.125 \times 10^{-5} = 191.25 \times 10^4 = 1.9125 \times 10^6 \][/tex]
Next, we calculate the denominator:
[tex]\[ (0.0020)^2 = 4.0 \times 10^{-6} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ F_e = \frac{1.9125 \times 10^6}{4.0 \times 10^{-6}} \][/tex]
Dividing the values:
[tex]\[ F_e = 47812500000.0 \][/tex]
So, the electric force is:
[tex]\[ F_e = 4.78125 \times 10^{10} \, \text{N} \][/tex]
Since charges are negative, and we are looking for the magnitude of force:
[tex]\[ F_e = 4.8 \times 10^{10} \, \text{N} \][/tex]
Thus, the correct answer is:
B. [tex]\( 4.8 \times 10^{10} \, \text{N} \)[/tex]
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = -0.0085 \, \text{C} \)[/tex]
- [tex]\( q_2 = -0.0025 \, \text{C} \)[/tex]
- [tex]\( r = 0.0020 \, \text{m} \)[/tex]
Let's plug these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) (-0.0085) (-0.0025)}{(0.0020)^2} \][/tex]
First, we calculate the numerator:
[tex]\[ 9.00 \times 10^9 \times -0.0085 \times -0.0025 \][/tex]
The product of the charges ([tex]\(-0.0085 \times -0.0025\)[/tex]) is:
[tex]\[ -0.0085 \times -0.0025 = 2.125 \times 10^{-5} \][/tex]
Therefore, the numerator becomes:
[tex]\[ 9.00 \times 10^9 \times 2.125 \times 10^{-5} = 191.25 \times 10^4 = 1.9125 \times 10^6 \][/tex]
Next, we calculate the denominator:
[tex]\[ (0.0020)^2 = 4.0 \times 10^{-6} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ F_e = \frac{1.9125 \times 10^6}{4.0 \times 10^{-6}} \][/tex]
Dividing the values:
[tex]\[ F_e = 47812500000.0 \][/tex]
So, the electric force is:
[tex]\[ F_e = 4.78125 \times 10^{10} \, \text{N} \][/tex]
Since charges are negative, and we are looking for the magnitude of force:
[tex]\[ F_e = 4.8 \times 10^{10} \, \text{N} \][/tex]
Thus, the correct answer is:
B. [tex]\( 4.8 \times 10^{10} \, \text{N} \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.