Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

What is the electric force acting between two charges of [tex]-0.0085 \, \text{C}[/tex] and [tex]-0.0025 \, \text{C}[/tex] that are [tex]0.0020 \, \text{m}[/tex] apart?

Use [tex]F_e = \frac{k q_1 q_2}{r^2}[/tex] and [tex]k = 9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2[/tex].

A. [tex]9.6 \times 10^7 \, \text{N}[/tex]

B. [tex]4.8 \times 10^{10} \, \text{N}[/tex]

C. [tex]-9.6 \times 10^7 \, \text{N}[/tex]

D. [tex]-4.8 \times 10^{10} \, \text{N}[/tex]

Sagot :

To find the electric force acting between two charges, we use Coulomb's Law, which states that the electric force ([tex]\(F_e\)[/tex]) between two point charges is given by:

[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]

where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.

Given:
- [tex]\( q_1 = -0.0085 \, \text{C} \)[/tex]
- [tex]\( q_2 = -0.0025 \, \text{C} \)[/tex]
- [tex]\( r = 0.0020 \, \text{m} \)[/tex]

Let's plug these values into the formula:

[tex]\[ F_e = \frac{(9.00 \times 10^9) (-0.0085) (-0.0025)}{(0.0020)^2} \][/tex]

First, we calculate the numerator:

[tex]\[ 9.00 \times 10^9 \times -0.0085 \times -0.0025 \][/tex]

The product of the charges ([tex]\(-0.0085 \times -0.0025\)[/tex]) is:

[tex]\[ -0.0085 \times -0.0025 = 2.125 \times 10^{-5} \][/tex]

Therefore, the numerator becomes:

[tex]\[ 9.00 \times 10^9 \times 2.125 \times 10^{-5} = 191.25 \times 10^4 = 1.9125 \times 10^6 \][/tex]

Next, we calculate the denominator:

[tex]\[ (0.0020)^2 = 4.0 \times 10^{-6} \][/tex]

Now, we divide the numerator by the denominator:

[tex]\[ F_e = \frac{1.9125 \times 10^6}{4.0 \times 10^{-6}} \][/tex]

Dividing the values:

[tex]\[ F_e = 47812500000.0 \][/tex]

So, the electric force is:

[tex]\[ F_e = 4.78125 \times 10^{10} \, \text{N} \][/tex]

Since charges are negative, and we are looking for the magnitude of force:

[tex]\[ F_e = 4.8 \times 10^{10} \, \text{N} \][/tex]

Thus, the correct answer is:

B. [tex]\( 4.8 \times 10^{10} \, \text{N} \)[/tex]