Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the electric force acting between two charges, we use Coulomb's Law, which states that the electric force ([tex]\(F_e\)[/tex]) between two point charges is given by:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = -0.0085 \, \text{C} \)[/tex]
- [tex]\( q_2 = -0.0025 \, \text{C} \)[/tex]
- [tex]\( r = 0.0020 \, \text{m} \)[/tex]
Let's plug these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) (-0.0085) (-0.0025)}{(0.0020)^2} \][/tex]
First, we calculate the numerator:
[tex]\[ 9.00 \times 10^9 \times -0.0085 \times -0.0025 \][/tex]
The product of the charges ([tex]\(-0.0085 \times -0.0025\)[/tex]) is:
[tex]\[ -0.0085 \times -0.0025 = 2.125 \times 10^{-5} \][/tex]
Therefore, the numerator becomes:
[tex]\[ 9.00 \times 10^9 \times 2.125 \times 10^{-5} = 191.25 \times 10^4 = 1.9125 \times 10^6 \][/tex]
Next, we calculate the denominator:
[tex]\[ (0.0020)^2 = 4.0 \times 10^{-6} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ F_e = \frac{1.9125 \times 10^6}{4.0 \times 10^{-6}} \][/tex]
Dividing the values:
[tex]\[ F_e = 47812500000.0 \][/tex]
So, the electric force is:
[tex]\[ F_e = 4.78125 \times 10^{10} \, \text{N} \][/tex]
Since charges are negative, and we are looking for the magnitude of force:
[tex]\[ F_e = 4.8 \times 10^{10} \, \text{N} \][/tex]
Thus, the correct answer is:
B. [tex]\( 4.8 \times 10^{10} \, \text{N} \)[/tex]
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]).
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = -0.0085 \, \text{C} \)[/tex]
- [tex]\( q_2 = -0.0025 \, \text{C} \)[/tex]
- [tex]\( r = 0.0020 \, \text{m} \)[/tex]
Let's plug these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) (-0.0085) (-0.0025)}{(0.0020)^2} \][/tex]
First, we calculate the numerator:
[tex]\[ 9.00 \times 10^9 \times -0.0085 \times -0.0025 \][/tex]
The product of the charges ([tex]\(-0.0085 \times -0.0025\)[/tex]) is:
[tex]\[ -0.0085 \times -0.0025 = 2.125 \times 10^{-5} \][/tex]
Therefore, the numerator becomes:
[tex]\[ 9.00 \times 10^9 \times 2.125 \times 10^{-5} = 191.25 \times 10^4 = 1.9125 \times 10^6 \][/tex]
Next, we calculate the denominator:
[tex]\[ (0.0020)^2 = 4.0 \times 10^{-6} \][/tex]
Now, we divide the numerator by the denominator:
[tex]\[ F_e = \frac{1.9125 \times 10^6}{4.0 \times 10^{-6}} \][/tex]
Dividing the values:
[tex]\[ F_e = 47812500000.0 \][/tex]
So, the electric force is:
[tex]\[ F_e = 4.78125 \times 10^{10} \, \text{N} \][/tex]
Since charges are negative, and we are looking for the magnitude of force:
[tex]\[ F_e = 4.8 \times 10^{10} \, \text{N} \][/tex]
Thus, the correct answer is:
B. [tex]\( 4.8 \times 10^{10} \, \text{N} \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.