Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! To solve this problem, we need to use the concept of dilution in chemistry. When a solution is diluted, the amount of solute remains the same, but the volume of the solvent increases. We can use the dilution equation:
[tex]\[ M_1 \times V_1 = M_2 \times V_2 \][/tex]
Here:
- [tex]\( M_1 \)[/tex] is the initial molarity (2.13 M)
- [tex]\( V_1 \)[/tex] is the initial volume (1.24 L)
- [tex]\( M_2 \)[/tex] is the final molarity (1.60 M)
- [tex]\( V_2 \)[/tex] is the final volume which we need to find
We can rearrange the equation to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{M_1 \times V_1}{M_2} \][/tex]
Substituting the given values into the equation:
[tex]\[ V_2 = \frac{2.13 \, \text{M} \times 1.24 \, \text{L}}{1.60 \, \text{M}} \][/tex]
[tex]\[ V_2 = \frac{2.6412 \, \text{M} \cdot \text{L}}{1.60 \, \text{M}} \][/tex]
[tex]\[ V_2 = 1.651375 \, \text{L} \][/tex]
Rounded to three significant figures, the volume of the new solution is 1.651 liters.
So, the volume of the new solution is [tex]\( \boxed{1.651} \)[/tex] liters.
[tex]\[ M_1 \times V_1 = M_2 \times V_2 \][/tex]
Here:
- [tex]\( M_1 \)[/tex] is the initial molarity (2.13 M)
- [tex]\( V_1 \)[/tex] is the initial volume (1.24 L)
- [tex]\( M_2 \)[/tex] is the final molarity (1.60 M)
- [tex]\( V_2 \)[/tex] is the final volume which we need to find
We can rearrange the equation to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{M_1 \times V_1}{M_2} \][/tex]
Substituting the given values into the equation:
[tex]\[ V_2 = \frac{2.13 \, \text{M} \times 1.24 \, \text{L}}{1.60 \, \text{M}} \][/tex]
[tex]\[ V_2 = \frac{2.6412 \, \text{M} \cdot \text{L}}{1.60 \, \text{M}} \][/tex]
[tex]\[ V_2 = 1.651375 \, \text{L} \][/tex]
Rounded to three significant figures, the volume of the new solution is 1.651 liters.
So, the volume of the new solution is [tex]\( \boxed{1.651} \)[/tex] liters.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.