Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

In what form is the following linear equation written?

[tex]\[ y - 3 = \frac{2}{3}(x - 1) \][/tex]

A. Slope-intercept
B. Rise-run
C. Standard
D. Point-slope


Sagot :

To determine the form in which the equation [tex]\( y - 3 = \frac{2}{3}(x - 1) \)[/tex] is written, let's analyze it step-by-step.

1. Identify the structure of the equation:
The equation [tex]\( y - 3 = \frac{2}{3}(x - 1) \)[/tex] appears to be in the form [tex]\( y - y_1 = m(x - x_1) \)[/tex].

2. Recognize the variables and constants:
- [tex]\( y_1 \)[/tex] represents the y-coordinate of a specific point on the line.
- [tex]\( x_1 \)[/tex] represents the x-coordinate of that point.
- [tex]\( m \)[/tex] is the slope of the line.

3. Compare the given equation to the general form:
Given equation: [tex]\( y - 3 = \frac{2}{3}(x - 1) \)[/tex]
General form: [tex]\( y - y_1 = m(x - x_1) \)[/tex]

Here, it is clear that:
- [tex]\( y_1 = 3 \)[/tex]
- [tex]\( x_1 = 1 \)[/tex]
- [tex]\( m = \frac{2}{3} \)[/tex]

4. Determine the form of the equation:
The point-slope form of a linear equation is given by [tex]\( y - y_1 = m(x - x_1) \)[/tex], which matches the structure of the provided equation.

Therefore, the equation [tex]\( y - 3 = \frac{2}{3}(x - 1) \)[/tex] is written in the point-slope form.

So, the answer is:
D. Point-slope