Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the inequality step-by-step.
We are given the inequality:
[tex]\[10x + 16 \geq 6x + 20\][/tex]
### Step 1: Simplify both sides of the inequality
First, let's move the [tex]\(6x\)[/tex] term from the right side to the left side by subtracting [tex]\(6x\)[/tex] from both sides:
[tex]\[10x + 16 - 6x \geq 6x + 20 - 6x\][/tex]
This simplifies to:
[tex]\[4x + 16 \geq 20\][/tex]
### Step 2: Isolate the variable
Next, we want to isolate the [tex]\(x\)[/tex] term. To do this, we'll subtract 16 from both sides:
[tex]\[4x + 16 - 16 \geq 20 - 16\][/tex]
This simplifies to:
[tex]\[4x \geq 4\][/tex]
### Step 3: Solve for [tex]\(x\)[/tex]
Finally, to solve for [tex]\(x\)[/tex], we'll divide both sides by 4:
[tex]\[\frac{4x}{4} \geq \frac{4}{4}\][/tex]
This simplifies to:
[tex]\[x \geq 1\][/tex]
### Conclusion
The solution to the inequality [tex]\(10x + 16 \geq 6x + 20\)[/tex] is:
[tex]\[x \geq 1\][/tex]
Therefore, the correct answer is:
A. [tex]\(x \geq 1\)[/tex]
We are given the inequality:
[tex]\[10x + 16 \geq 6x + 20\][/tex]
### Step 1: Simplify both sides of the inequality
First, let's move the [tex]\(6x\)[/tex] term from the right side to the left side by subtracting [tex]\(6x\)[/tex] from both sides:
[tex]\[10x + 16 - 6x \geq 6x + 20 - 6x\][/tex]
This simplifies to:
[tex]\[4x + 16 \geq 20\][/tex]
### Step 2: Isolate the variable
Next, we want to isolate the [tex]\(x\)[/tex] term. To do this, we'll subtract 16 from both sides:
[tex]\[4x + 16 - 16 \geq 20 - 16\][/tex]
This simplifies to:
[tex]\[4x \geq 4\][/tex]
### Step 3: Solve for [tex]\(x\)[/tex]
Finally, to solve for [tex]\(x\)[/tex], we'll divide both sides by 4:
[tex]\[\frac{4x}{4} \geq \frac{4}{4}\][/tex]
This simplifies to:
[tex]\[x \geq 1\][/tex]
### Conclusion
The solution to the inequality [tex]\(10x + 16 \geq 6x + 20\)[/tex] is:
[tex]\[x \geq 1\][/tex]
Therefore, the correct answer is:
A. [tex]\(x \geq 1\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.