Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the sum of the polynomials [tex]\((8x^2 - 9y^2 - 4x)\)[/tex] and [tex]\((x^2 - 3y^2 - 7x)\)[/tex], we need to add the coefficients of the corresponding terms: [tex]\(x^2\)[/tex], [tex]\(y^2\)[/tex], and [tex]\(x\)[/tex].
### Step-by-Step Solution:
1. Identify the coefficients of [tex]\(x^2\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(8x^2\)[/tex]
- For the second polynomial: [tex]\(x^2\)[/tex]
Add these coefficients together:
[tex]\[ 8 + 1 = 9 \][/tex]
Hence, the coefficient of [tex]\(x^2\)[/tex] in the resulting polynomial is [tex]\(9\)[/tex].
2. Identify the coefficients of [tex]\(y^2\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(-9y^2\)[/tex]
- For the second polynomial: [tex]\(-3y^2\)[/tex]
Add these coefficients together:
[tex]\[ -9 + (-3) = -12 \][/tex]
Hence, the coefficient of [tex]\(y^2\)[/tex] in the resulting polynomial is [tex]\(-12\)[/tex].
3. Identify the coefficients of [tex]\(x\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(-4x\)[/tex]
- For the second polynomial: [tex]\(-7x\)[/tex]
Add these coefficients together:
[tex]\[ -4 + (-7) = -11 \][/tex]
Hence, the coefficient of [tex]\(x\)[/tex] in the resulting polynomial is [tex]\(-11\)[/tex].
### Form the Resulting Polynomial:
Combine the results from each step to form the sum of the given polynomials:
[tex]\[ 9x^2 - 12y^2 - 11x \][/tex]
### Final Answer:
The sum of the polynomials [tex]\((8x^2 - 9y^2 - 4x)\)[/tex] and [tex]\((x^2 - 3y^2 - 7x)\)[/tex] is:
[tex]\[ \boxed{9x^2 - 12y^2 - 11x} \][/tex]
### Step-by-Step Solution:
1. Identify the coefficients of [tex]\(x^2\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(8x^2\)[/tex]
- For the second polynomial: [tex]\(x^2\)[/tex]
Add these coefficients together:
[tex]\[ 8 + 1 = 9 \][/tex]
Hence, the coefficient of [tex]\(x^2\)[/tex] in the resulting polynomial is [tex]\(9\)[/tex].
2. Identify the coefficients of [tex]\(y^2\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(-9y^2\)[/tex]
- For the second polynomial: [tex]\(-3y^2\)[/tex]
Add these coefficients together:
[tex]\[ -9 + (-3) = -12 \][/tex]
Hence, the coefficient of [tex]\(y^2\)[/tex] in the resulting polynomial is [tex]\(-12\)[/tex].
3. Identify the coefficients of [tex]\(x\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(-4x\)[/tex]
- For the second polynomial: [tex]\(-7x\)[/tex]
Add these coefficients together:
[tex]\[ -4 + (-7) = -11 \][/tex]
Hence, the coefficient of [tex]\(x\)[/tex] in the resulting polynomial is [tex]\(-11\)[/tex].
### Form the Resulting Polynomial:
Combine the results from each step to form the sum of the given polynomials:
[tex]\[ 9x^2 - 12y^2 - 11x \][/tex]
### Final Answer:
The sum of the polynomials [tex]\((8x^2 - 9y^2 - 4x)\)[/tex] and [tex]\((x^2 - 3y^2 - 7x)\)[/tex] is:
[tex]\[ \boxed{9x^2 - 12y^2 - 11x} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.