Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the sum of the polynomials [tex]\((8x^2 - 9y^2 - 4x)\)[/tex] and [tex]\((x^2 - 3y^2 - 7x)\)[/tex], we need to add the coefficients of the corresponding terms: [tex]\(x^2\)[/tex], [tex]\(y^2\)[/tex], and [tex]\(x\)[/tex].
### Step-by-Step Solution:
1. Identify the coefficients of [tex]\(x^2\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(8x^2\)[/tex]
- For the second polynomial: [tex]\(x^2\)[/tex]
Add these coefficients together:
[tex]\[ 8 + 1 = 9 \][/tex]
Hence, the coefficient of [tex]\(x^2\)[/tex] in the resulting polynomial is [tex]\(9\)[/tex].
2. Identify the coefficients of [tex]\(y^2\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(-9y^2\)[/tex]
- For the second polynomial: [tex]\(-3y^2\)[/tex]
Add these coefficients together:
[tex]\[ -9 + (-3) = -12 \][/tex]
Hence, the coefficient of [tex]\(y^2\)[/tex] in the resulting polynomial is [tex]\(-12\)[/tex].
3. Identify the coefficients of [tex]\(x\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(-4x\)[/tex]
- For the second polynomial: [tex]\(-7x\)[/tex]
Add these coefficients together:
[tex]\[ -4 + (-7) = -11 \][/tex]
Hence, the coefficient of [tex]\(x\)[/tex] in the resulting polynomial is [tex]\(-11\)[/tex].
### Form the Resulting Polynomial:
Combine the results from each step to form the sum of the given polynomials:
[tex]\[ 9x^2 - 12y^2 - 11x \][/tex]
### Final Answer:
The sum of the polynomials [tex]\((8x^2 - 9y^2 - 4x)\)[/tex] and [tex]\((x^2 - 3y^2 - 7x)\)[/tex] is:
[tex]\[ \boxed{9x^2 - 12y^2 - 11x} \][/tex]
### Step-by-Step Solution:
1. Identify the coefficients of [tex]\(x^2\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(8x^2\)[/tex]
- For the second polynomial: [tex]\(x^2\)[/tex]
Add these coefficients together:
[tex]\[ 8 + 1 = 9 \][/tex]
Hence, the coefficient of [tex]\(x^2\)[/tex] in the resulting polynomial is [tex]\(9\)[/tex].
2. Identify the coefficients of [tex]\(y^2\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(-9y^2\)[/tex]
- For the second polynomial: [tex]\(-3y^2\)[/tex]
Add these coefficients together:
[tex]\[ -9 + (-3) = -12 \][/tex]
Hence, the coefficient of [tex]\(y^2\)[/tex] in the resulting polynomial is [tex]\(-12\)[/tex].
3. Identify the coefficients of [tex]\(x\)[/tex] terms in both polynomials:
- For the first polynomial: [tex]\(-4x\)[/tex]
- For the second polynomial: [tex]\(-7x\)[/tex]
Add these coefficients together:
[tex]\[ -4 + (-7) = -11 \][/tex]
Hence, the coefficient of [tex]\(x\)[/tex] in the resulting polynomial is [tex]\(-11\)[/tex].
### Form the Resulting Polynomial:
Combine the results from each step to form the sum of the given polynomials:
[tex]\[ 9x^2 - 12y^2 - 11x \][/tex]
### Final Answer:
The sum of the polynomials [tex]\((8x^2 - 9y^2 - 4x)\)[/tex] and [tex]\((x^2 - 3y^2 - 7x)\)[/tex] is:
[tex]\[ \boxed{9x^2 - 12y^2 - 11x} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.