Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Which of the following is the correct solution to the linear inequality shown below?

[tex]\[ y \ \textgreater \ \frac{1}{3} x - 2 \][/tex]

A.
B.

Sagot :

To solve the linear inequality [tex]\( y > \frac{1}{3}x - 2 \)[/tex], let's follow a step-by-step approach to understand its solution:

1. Identify the Inequality:
The inequality given is [tex]\( y > \frac{1}{3}x - 2 \)[/tex].

2. Understand the Graphical Representation:
This is a linear inequality, which means we are dealing with the region above or below a line. The line itself in this case has the equation:
[tex]\[ y = \frac{1}{3}x - 2 \][/tex]
This line has a slope of [tex]\( \frac{1}{3} \)[/tex] and a y-intercept of [tex]\( -2 \)[/tex].

3. Graph the Boundary Line:
To graph the boundary line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]:
- Start by plotting the y-intercept (0, -2).
- Use the slope to find another point on the line. From (0, -2), move up 1 unit and right 3 units to get to (3, -1).

4. Solid or Dashed Line?:
Since the inequality is strictly greater than ( [tex]\( > \)[/tex] ), we use a dashed line for the graph. This indicates that points on the line [tex]\( y = \frac{1}{3}x - 2 \)[/tex] are not included in the solution.

5. Determine the Shading:
For [tex]\( y > \frac{1}{3}x - 2 \)[/tex], we shade the region above the dashed line because we are looking for the set of points where [tex]\( y \)[/tex] is greater than [tex]\( \frac{1}{3}x - 2 \)[/tex].

Summary:
- A dashed line represents the boundary [tex]\( y = \frac{1}{3}x - 2 \)[/tex].
- Shade the region above this line.

Given our steps and conclusion, the correct solution to the inequality [tex]\( y > \frac{1}{3}x - 2 \)[/tex] involves graphing a dashed line for the boundary [tex]\( y = \frac{1}{3}x - 2 \)[/tex] and shading the area above this line.

If options A and B had information on the graphical representation or coordinate points, you would now match these characteristics with the correct choice. However, without details on options A and B, ensure that you understand this methodology to identify the correct graphical representation in any similar situation.