Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the inequality [tex]\( y > \frac{1}{3} x - 2 \)[/tex], we need to determine which points in the coordinate plane satisfy this inequality.
1. Understand the Equation of the Line:
The inequality is based on the line [tex]\( y = \frac{1}{3} x - 2 \)[/tex]. This line divides the plane into two regions:
- Points above the line satisfy [tex]\( y > \frac{1}{3} x - 2 \)[/tex].
- Points below the line do not satisfy the inequality.
2. Testing Points to the Inequality:
Let's test a few points to see if they satisfy the inequality:
- Point (0, 0):
[tex]\[ y = 0 \quad \text{and} \quad x = 0 \][/tex]
Substitute into the inequality:
[tex]\[ 0 > \frac{1}{3}(0) - 2 \implies 0 > -2 \][/tex]
This is true. So, the point (0, 0) satisfies the inequality.
- Point (3, 0):
[tex]\[ y = 0 \quad \text{and} \quad x = 3 \][/tex]
Substitute into the inequality:
[tex]\[ 0 > \frac{1}{3}(3) - 2 \implies 0 > 1 - 2 \implies 0 > -1 \][/tex]
This is true. So, the point (3, 0) satisfies the inequality.
- Point (6, 2):
[tex]\[ y = 2 \quad \text{and} \quad x = 6 \][/tex]
Substitute into the inequality:
[tex]\[ 2 > \frac{1}{3}(6) - 2 \implies 2 > 2 - 2 \implies 2 > 0 \][/tex]
This is true. So, the point (6, 2) satisfies the inequality.
3. Conclusion:
The points (0, 0), (3, 0), and (6, 2) all satisfy the inequality [tex]\( y > \frac{1}{3} x - 2 \)[/tex]. Therefore, any point above the line defined by [tex]\( y = \frac{1}{3} x - 2 \)[/tex] will satisfy the given inequality.
By systematically testing points and confirming they satisfy the inequality, we can conclude that the solution consists of all points above the line [tex]\( y = \frac{1}{3} x - 2 \)[/tex]. This approach can be used to verify other points as well.
1. Understand the Equation of the Line:
The inequality is based on the line [tex]\( y = \frac{1}{3} x - 2 \)[/tex]. This line divides the plane into two regions:
- Points above the line satisfy [tex]\( y > \frac{1}{3} x - 2 \)[/tex].
- Points below the line do not satisfy the inequality.
2. Testing Points to the Inequality:
Let's test a few points to see if they satisfy the inequality:
- Point (0, 0):
[tex]\[ y = 0 \quad \text{and} \quad x = 0 \][/tex]
Substitute into the inequality:
[tex]\[ 0 > \frac{1}{3}(0) - 2 \implies 0 > -2 \][/tex]
This is true. So, the point (0, 0) satisfies the inequality.
- Point (3, 0):
[tex]\[ y = 0 \quad \text{and} \quad x = 3 \][/tex]
Substitute into the inequality:
[tex]\[ 0 > \frac{1}{3}(3) - 2 \implies 0 > 1 - 2 \implies 0 > -1 \][/tex]
This is true. So, the point (3, 0) satisfies the inequality.
- Point (6, 2):
[tex]\[ y = 2 \quad \text{and} \quad x = 6 \][/tex]
Substitute into the inequality:
[tex]\[ 2 > \frac{1}{3}(6) - 2 \implies 2 > 2 - 2 \implies 2 > 0 \][/tex]
This is true. So, the point (6, 2) satisfies the inequality.
3. Conclusion:
The points (0, 0), (3, 0), and (6, 2) all satisfy the inequality [tex]\( y > \frac{1}{3} x - 2 \)[/tex]. Therefore, any point above the line defined by [tex]\( y = \frac{1}{3} x - 2 \)[/tex] will satisfy the given inequality.
By systematically testing points and confirming they satisfy the inequality, we can conclude that the solution consists of all points above the line [tex]\( y = \frac{1}{3} x - 2 \)[/tex]. This approach can be used to verify other points as well.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.