Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the amount of energy it takes to boil [tex]\(100 \, \text{mL}\)[/tex] of water, let's follow these steps:
1. Volume to Mass Conversion:
Since 1 mL of water has a mass of 1 gram, the mass of 100 mL of water is:
[tex]\[ 100 \, \text{mL} \times \frac{1 \, \text{g}}{1 \, \text{mL}} = 100 \, \text{g} \][/tex]
2. Mass to Moles Conversion:
Next, we need to convert the mass of water to moles. The molar mass of water (H₂O) is approximately 18.02 g/mol. Thus, the number of moles of water is:
[tex]\[ \text{Moles of water} = \frac{\text{Mass of water}}{\text{Molar mass of water}} = \frac{100 \, \text{g}}{18.02 \, \text{g/mol}} \approx 5.55 \, \text{mol} \][/tex]
3. Energy Required for Each Option:
Now we use the number of moles to calculate the energy based on different energy constants provided for each option:
- Option A:
Energy required per mole = 6.03 kJ/mol
[tex]\[ \text{Energy (A)} = 5.55 \, \text{mol} \times 6.03 \, \text{kJ/mol} \approx 33.46 \, \text{kJ} \][/tex]
- Option B:
Energy required per mole = -285.83 kJ/mol
[tex]\[ \text{Energy (B)} = 5.55 \, \text{mol} \times (-285.83 \, \text{kJ/mol}) \approx -1586.18 \, \text{kJ} \][/tex]
- Option C:
Energy required per mole = 40.65 kJ/mol
[tex]\[ \text{Energy (C)} = 5.55 \, \text{mol} \times 40.65 \, \text{kJ/mol} \approx 225.58 \, \text{kJ} \][/tex]
- Option D:
Energy required per mole = 4.186 kJ/mol
[tex]\[ \text{Energy (D)} = 5.55 \, \text{mol} \times 4.186 \, \text{kJ/mol} \approx 23.23 \, \text{kJ} \][/tex]
Comparing these calculations with the given options:
- Option A: 33.5 kJ is approximately 33.46 kJ.
- Option B: -1586 kJ is approximately -1586.18 kJ.
- Option C: 226 kJ is approximately 225.58 kJ.
- Option D: 23.2 kJ is approximately 23.23 kJ.
The closest match for the calculated energy with the given options is Option A: [tex]\(33.5 \, \text{kJ}\)[/tex].
Therefore, the energy required to boil [tex]\(100 \, \text{mL}\)[/tex] of water is:
A. [tex]\(33.5 \, \text{kJ}\)[/tex].
1. Volume to Mass Conversion:
Since 1 mL of water has a mass of 1 gram, the mass of 100 mL of water is:
[tex]\[ 100 \, \text{mL} \times \frac{1 \, \text{g}}{1 \, \text{mL}} = 100 \, \text{g} \][/tex]
2. Mass to Moles Conversion:
Next, we need to convert the mass of water to moles. The molar mass of water (H₂O) is approximately 18.02 g/mol. Thus, the number of moles of water is:
[tex]\[ \text{Moles of water} = \frac{\text{Mass of water}}{\text{Molar mass of water}} = \frac{100 \, \text{g}}{18.02 \, \text{g/mol}} \approx 5.55 \, \text{mol} \][/tex]
3. Energy Required for Each Option:
Now we use the number of moles to calculate the energy based on different energy constants provided for each option:
- Option A:
Energy required per mole = 6.03 kJ/mol
[tex]\[ \text{Energy (A)} = 5.55 \, \text{mol} \times 6.03 \, \text{kJ/mol} \approx 33.46 \, \text{kJ} \][/tex]
- Option B:
Energy required per mole = -285.83 kJ/mol
[tex]\[ \text{Energy (B)} = 5.55 \, \text{mol} \times (-285.83 \, \text{kJ/mol}) \approx -1586.18 \, \text{kJ} \][/tex]
- Option C:
Energy required per mole = 40.65 kJ/mol
[tex]\[ \text{Energy (C)} = 5.55 \, \text{mol} \times 40.65 \, \text{kJ/mol} \approx 225.58 \, \text{kJ} \][/tex]
- Option D:
Energy required per mole = 4.186 kJ/mol
[tex]\[ \text{Energy (D)} = 5.55 \, \text{mol} \times 4.186 \, \text{kJ/mol} \approx 23.23 \, \text{kJ} \][/tex]
Comparing these calculations with the given options:
- Option A: 33.5 kJ is approximately 33.46 kJ.
- Option B: -1586 kJ is approximately -1586.18 kJ.
- Option C: 226 kJ is approximately 225.58 kJ.
- Option D: 23.2 kJ is approximately 23.23 kJ.
The closest match for the calculated energy with the given options is Option A: [tex]\(33.5 \, \text{kJ}\)[/tex].
Therefore, the energy required to boil [tex]\(100 \, \text{mL}\)[/tex] of water is:
A. [tex]\(33.5 \, \text{kJ}\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.