Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the coordinates of the other end of Grady's father's fence, we need to use the midpoint formula and solve for the unknown endpoint.
The midpoint formula is given by:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is the start point, and [tex]\((x_2, y_2)\)[/tex] is the endpoint of the line segment.
Given:
- Start point [tex]\((x_1, y_1) = (8, 5)\)[/tex]
- Midpoint [tex]\((\text{mid}_x, \text{mid}_y) = (3.5, -1)\)[/tex]
To find the coordinates of the other end point [tex]\((x_2, y_2)\)[/tex], we will use the midpoint formula and solve for [tex]\(x_2\)[/tex] and [tex]\(y_2\)[/tex].
Step 1: Solve for [tex]\(x_2\)[/tex]
Using the midpoint formula for the x-coordinates:
[tex]\[ 3.5 = \frac{8 + x_2}{2} \][/tex]
Multiply both sides by 2 to isolate [tex]\(x_2\)[/tex]:
[tex]\[ 7 = 8 + x_2 \][/tex]
Subtract 8 from both sides:
[tex]\[ x_2 = 7 - 8 \][/tex]
[tex]\[ x_2 = -1 \][/tex]
Step 2: Solve for [tex]\(y_2\)[/tex]
Using the midpoint formula for the y-coordinates:
[tex]\[ -1 = \frac{5 + y_2}{2} \][/tex]
Multiply both sides by 2 to isolate [tex]\(y_2\)[/tex]:
[tex]\[ -2 = 5 + y_2 \][/tex]
Subtract 5 from both sides:
[tex]\[ y_2 = -2 - 5 \][/tex]
[tex]\[ y_2 = -7 \][/tex]
Therefore, the coordinates of the other end of the fence are [tex]\((-1, -7)\)[/tex].
The correct answer is:
[tex]\[ \boxed{(-1, -7)} \][/tex]
The midpoint formula is given by:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is the start point, and [tex]\((x_2, y_2)\)[/tex] is the endpoint of the line segment.
Given:
- Start point [tex]\((x_1, y_1) = (8, 5)\)[/tex]
- Midpoint [tex]\((\text{mid}_x, \text{mid}_y) = (3.5, -1)\)[/tex]
To find the coordinates of the other end point [tex]\((x_2, y_2)\)[/tex], we will use the midpoint formula and solve for [tex]\(x_2\)[/tex] and [tex]\(y_2\)[/tex].
Step 1: Solve for [tex]\(x_2\)[/tex]
Using the midpoint formula for the x-coordinates:
[tex]\[ 3.5 = \frac{8 + x_2}{2} \][/tex]
Multiply both sides by 2 to isolate [tex]\(x_2\)[/tex]:
[tex]\[ 7 = 8 + x_2 \][/tex]
Subtract 8 from both sides:
[tex]\[ x_2 = 7 - 8 \][/tex]
[tex]\[ x_2 = -1 \][/tex]
Step 2: Solve for [tex]\(y_2\)[/tex]
Using the midpoint formula for the y-coordinates:
[tex]\[ -1 = \frac{5 + y_2}{2} \][/tex]
Multiply both sides by 2 to isolate [tex]\(y_2\)[/tex]:
[tex]\[ -2 = 5 + y_2 \][/tex]
Subtract 5 from both sides:
[tex]\[ y_2 = -2 - 5 \][/tex]
[tex]\[ y_2 = -7 \][/tex]
Therefore, the coordinates of the other end of the fence are [tex]\((-1, -7)\)[/tex].
The correct answer is:
[tex]\[ \boxed{(-1, -7)} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.