Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the equation of the line passing through the points [tex]\((3, -4)\)[/tex] and [tex]\((5, 1)\)[/tex], we need to determine the standard form of the line, which is [tex]\(Ax + By = C\)[/tex].
### Step 1: Calculate the slope of the line
The slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of the given points [tex]\((3, -4)\)[/tex] and [tex]\((5, 1)\)[/tex]:
[tex]\[ m = \frac{1 - (-4)}{5 - 3} = \frac{1 + 4}{5 - 3} = \frac{5}{2} \][/tex]
### Step 2: Use the point-slope form to find the equation
The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using one of our points, [tex]\((3, -4)\)[/tex], and the slope [tex]\(m = \frac{5}{2}\)[/tex]:
[tex]\[ y + 4 = \frac{5}{2} (x - 3) \][/tex]
### Step 3: Simplify to slope-intercept form
Expanding and simplifying the equation:
[tex]\[ y + 4 = \frac{5}{2}x - \frac{15}{2} \][/tex]
Subtracting 4 on both sides:
[tex]\[ y = \frac{5}{2}x - \frac{15}{2} - 4 \][/tex]
Combining the constants on the right-hand side:
[tex]\[ y = \frac{5}{2}x - \frac{15}{2} - \frac{8}{2} \][/tex]
[tex]\[ y = \frac{5}{2}x - \frac{23}{2} \][/tex]
### Step 4: Convert to standard form [tex]\(Ax + By = C\)[/tex]
We need to rearrange [tex]\(y = \frac{5}{2}x - \frac{23}{2}\)[/tex] to the standard form [tex]\(Ax + By = C\)[/tex].
First, clear the fractions by multiplying through by 2:
[tex]\[ 2y = 5x - 23 \][/tex]
Rearranging to standard form [tex]\(Ax + By = C\)[/tex]:
[tex]\[ 5x - 2y = 23 \][/tex]
### Final Result
The equation of the line in standard form is [tex]\(5x - 2y = 23\)[/tex], which matches option A.
Therefore, the correct answer is:
A. [tex]\(5x - 2y = 23\)[/tex]
### Step 1: Calculate the slope of the line
The slope [tex]\(m\)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in the coordinates of the given points [tex]\((3, -4)\)[/tex] and [tex]\((5, 1)\)[/tex]:
[tex]\[ m = \frac{1 - (-4)}{5 - 3} = \frac{1 + 4}{5 - 3} = \frac{5}{2} \][/tex]
### Step 2: Use the point-slope form to find the equation
The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using one of our points, [tex]\((3, -4)\)[/tex], and the slope [tex]\(m = \frac{5}{2}\)[/tex]:
[tex]\[ y + 4 = \frac{5}{2} (x - 3) \][/tex]
### Step 3: Simplify to slope-intercept form
Expanding and simplifying the equation:
[tex]\[ y + 4 = \frac{5}{2}x - \frac{15}{2} \][/tex]
Subtracting 4 on both sides:
[tex]\[ y = \frac{5}{2}x - \frac{15}{2} - 4 \][/tex]
Combining the constants on the right-hand side:
[tex]\[ y = \frac{5}{2}x - \frac{15}{2} - \frac{8}{2} \][/tex]
[tex]\[ y = \frac{5}{2}x - \frac{23}{2} \][/tex]
### Step 4: Convert to standard form [tex]\(Ax + By = C\)[/tex]
We need to rearrange [tex]\(y = \frac{5}{2}x - \frac{23}{2}\)[/tex] to the standard form [tex]\(Ax + By = C\)[/tex].
First, clear the fractions by multiplying through by 2:
[tex]\[ 2y = 5x - 23 \][/tex]
Rearranging to standard form [tex]\(Ax + By = C\)[/tex]:
[tex]\[ 5x - 2y = 23 \][/tex]
### Final Result
The equation of the line in standard form is [tex]\(5x - 2y = 23\)[/tex], which matches option A.
Therefore, the correct answer is:
A. [tex]\(5x - 2y = 23\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.