Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the Gibbs free energy change ([tex]\(\Delta G\)[/tex]) at a given temperature ([tex]\(T\)[/tex]), we can use the following formula:
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Where:
- [tex]\(\Delta H\)[/tex] is the enthalpy change.
- [tex]\(T\)[/tex] is the temperature in Kelvin.
- [tex]\(\Delta S\)[/tex] is the entropy change.
We are given the following values:
- [tex]\(\Delta H = -220 \text{ kJ/mol}\)[/tex]
- [tex]\(T = 1000 \text{ K}\)[/tex]
- [tex]\(\Delta S = -0.05 \text{ kJ/(mol K)}\)[/tex]
Let's substitute these values into the formula step-by-step:
Step 1: Write down the formula and substitute the values:
[tex]\[ \Delta G = -220 \text{ kJ/mol} - (1000 \text{ K} \times -0.05 \text{ kJ/(mol K)}) \][/tex]
Step 2: Calculate the term [tex]\(T \Delta S\)[/tex]:
[tex]\[ 1000 \text{ K} \times -0.05 \text{ kJ/(mol K)} = -50 \text{ kJ/mol} \][/tex]
Step 3: Substitute this result back into the formula:
[tex]\[ \Delta G = -220 \text{ kJ/mol} - (-50 \text{ kJ/mol}) \][/tex]
Step 4: Simplify the expression:
[tex]\[ \Delta G = -220 \text{ kJ/mol} + 50 \text{ kJ/mol} = -170 \text{ kJ/mol} \][/tex]
Therefore, the value of [tex]\(\Delta G\)[/tex] at [tex]\(1000\)[/tex] K is [tex]\(-170 \text{ kJ/mol}\)[/tex].
The correct answer is:
D. [tex]\(-170 \text{ kJ}\)[/tex]
[tex]\[ \Delta G = \Delta H - T \Delta S \][/tex]
Where:
- [tex]\(\Delta H\)[/tex] is the enthalpy change.
- [tex]\(T\)[/tex] is the temperature in Kelvin.
- [tex]\(\Delta S\)[/tex] is the entropy change.
We are given the following values:
- [tex]\(\Delta H = -220 \text{ kJ/mol}\)[/tex]
- [tex]\(T = 1000 \text{ K}\)[/tex]
- [tex]\(\Delta S = -0.05 \text{ kJ/(mol K)}\)[/tex]
Let's substitute these values into the formula step-by-step:
Step 1: Write down the formula and substitute the values:
[tex]\[ \Delta G = -220 \text{ kJ/mol} - (1000 \text{ K} \times -0.05 \text{ kJ/(mol K)}) \][/tex]
Step 2: Calculate the term [tex]\(T \Delta S\)[/tex]:
[tex]\[ 1000 \text{ K} \times -0.05 \text{ kJ/(mol K)} = -50 \text{ kJ/mol} \][/tex]
Step 3: Substitute this result back into the formula:
[tex]\[ \Delta G = -220 \text{ kJ/mol} - (-50 \text{ kJ/mol}) \][/tex]
Step 4: Simplify the expression:
[tex]\[ \Delta G = -220 \text{ kJ/mol} + 50 \text{ kJ/mol} = -170 \text{ kJ/mol} \][/tex]
Therefore, the value of [tex]\(\Delta G\)[/tex] at [tex]\(1000\)[/tex] K is [tex]\(-170 \text{ kJ/mol}\)[/tex].
The correct answer is:
D. [tex]\(-170 \text{ kJ}\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.