Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which of the given points lie on the line defined by the equation [tex]\( y = 2x \)[/tex], we need to check each point to see if it satisfies the equation. We will substitute the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] coordinates of each point into the equation and verify if both sides of the equation are equal.
The equation is [tex]\( y = 2x \)[/tex].
Let's check each point one by one.
Point A: [tex]\((3, 6)\)[/tex]
- Substitute [tex]\( x = 3 \)[/tex] into the equation: [tex]\( y = 2(3) \)[/tex]
- This gives [tex]\( y = 6 \)[/tex]
- The coordinates [tex]\((3, 6)\)[/tex] satisfy the equation, so this point is on the line.
Point B: [tex]\((5, 10)\)[/tex]
- Substitute [tex]\( x = 5 \)[/tex] into the equation: [tex]\( y = 2(5) \)[/tex]
- This gives [tex]\( y = 10 \)[/tex]
- The coordinates [tex]\((5, 10)\)[/tex] satisfy the equation, so this point is on the line.
Point C: [tex]\((1, 3)\)[/tex]
- Substitute [tex]\( x = 1 \)[/tex] into the equation: [tex]\( y = 2(1) \)[/tex]
- This gives [tex]\( y = 2 \)[/tex]
- The coordinates [tex]\((1, 3)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point D: [tex]\((4, 6)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 6)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point E: [tex]\((16, 8)\)[/tex]
- Substitute [tex]\( x = 16 \)[/tex] into the equation: [tex]\( y = 2(16) \)[/tex]
- This gives [tex]\( y = 32 \)[/tex]
- The coordinates [tex]\((16, 8)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point F: [tex]\((4, 2)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 2)\)[/tex] do not satisfy the equation, so this point is not on the line.
After checking all the points, the ones that satisfy the equation [tex]\( y = 2x \)[/tex] and hence lie on the line are:
- [tex]\((3, 6)\)[/tex]
- [tex]\((5, 10)\)[/tex]
So, the points that are on the line [tex]\( y = 2x \)[/tex] are:
[tex]\[ \boxed{A. (3, 6) \text{ and } B. (5, 10)} \][/tex]
The equation is [tex]\( y = 2x \)[/tex].
Let's check each point one by one.
Point A: [tex]\((3, 6)\)[/tex]
- Substitute [tex]\( x = 3 \)[/tex] into the equation: [tex]\( y = 2(3) \)[/tex]
- This gives [tex]\( y = 6 \)[/tex]
- The coordinates [tex]\((3, 6)\)[/tex] satisfy the equation, so this point is on the line.
Point B: [tex]\((5, 10)\)[/tex]
- Substitute [tex]\( x = 5 \)[/tex] into the equation: [tex]\( y = 2(5) \)[/tex]
- This gives [tex]\( y = 10 \)[/tex]
- The coordinates [tex]\((5, 10)\)[/tex] satisfy the equation, so this point is on the line.
Point C: [tex]\((1, 3)\)[/tex]
- Substitute [tex]\( x = 1 \)[/tex] into the equation: [tex]\( y = 2(1) \)[/tex]
- This gives [tex]\( y = 2 \)[/tex]
- The coordinates [tex]\((1, 3)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point D: [tex]\((4, 6)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 6)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point E: [tex]\((16, 8)\)[/tex]
- Substitute [tex]\( x = 16 \)[/tex] into the equation: [tex]\( y = 2(16) \)[/tex]
- This gives [tex]\( y = 32 \)[/tex]
- The coordinates [tex]\((16, 8)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point F: [tex]\((4, 2)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 2)\)[/tex] do not satisfy the equation, so this point is not on the line.
After checking all the points, the ones that satisfy the equation [tex]\( y = 2x \)[/tex] and hence lie on the line are:
- [tex]\((3, 6)\)[/tex]
- [tex]\((5, 10)\)[/tex]
So, the points that are on the line [tex]\( y = 2x \)[/tex] are:
[tex]\[ \boxed{A. (3, 6) \text{ and } B. (5, 10)} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.