Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which of the given points lie on the line defined by the equation [tex]\( y = 2x \)[/tex], we need to check each point to see if it satisfies the equation. We will substitute the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] coordinates of each point into the equation and verify if both sides of the equation are equal.
The equation is [tex]\( y = 2x \)[/tex].
Let's check each point one by one.
Point A: [tex]\((3, 6)\)[/tex]
- Substitute [tex]\( x = 3 \)[/tex] into the equation: [tex]\( y = 2(3) \)[/tex]
- This gives [tex]\( y = 6 \)[/tex]
- The coordinates [tex]\((3, 6)\)[/tex] satisfy the equation, so this point is on the line.
Point B: [tex]\((5, 10)\)[/tex]
- Substitute [tex]\( x = 5 \)[/tex] into the equation: [tex]\( y = 2(5) \)[/tex]
- This gives [tex]\( y = 10 \)[/tex]
- The coordinates [tex]\((5, 10)\)[/tex] satisfy the equation, so this point is on the line.
Point C: [tex]\((1, 3)\)[/tex]
- Substitute [tex]\( x = 1 \)[/tex] into the equation: [tex]\( y = 2(1) \)[/tex]
- This gives [tex]\( y = 2 \)[/tex]
- The coordinates [tex]\((1, 3)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point D: [tex]\((4, 6)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 6)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point E: [tex]\((16, 8)\)[/tex]
- Substitute [tex]\( x = 16 \)[/tex] into the equation: [tex]\( y = 2(16) \)[/tex]
- This gives [tex]\( y = 32 \)[/tex]
- The coordinates [tex]\((16, 8)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point F: [tex]\((4, 2)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 2)\)[/tex] do not satisfy the equation, so this point is not on the line.
After checking all the points, the ones that satisfy the equation [tex]\( y = 2x \)[/tex] and hence lie on the line are:
- [tex]\((3, 6)\)[/tex]
- [tex]\((5, 10)\)[/tex]
So, the points that are on the line [tex]\( y = 2x \)[/tex] are:
[tex]\[ \boxed{A. (3, 6) \text{ and } B. (5, 10)} \][/tex]
The equation is [tex]\( y = 2x \)[/tex].
Let's check each point one by one.
Point A: [tex]\((3, 6)\)[/tex]
- Substitute [tex]\( x = 3 \)[/tex] into the equation: [tex]\( y = 2(3) \)[/tex]
- This gives [tex]\( y = 6 \)[/tex]
- The coordinates [tex]\((3, 6)\)[/tex] satisfy the equation, so this point is on the line.
Point B: [tex]\((5, 10)\)[/tex]
- Substitute [tex]\( x = 5 \)[/tex] into the equation: [tex]\( y = 2(5) \)[/tex]
- This gives [tex]\( y = 10 \)[/tex]
- The coordinates [tex]\((5, 10)\)[/tex] satisfy the equation, so this point is on the line.
Point C: [tex]\((1, 3)\)[/tex]
- Substitute [tex]\( x = 1 \)[/tex] into the equation: [tex]\( y = 2(1) \)[/tex]
- This gives [tex]\( y = 2 \)[/tex]
- The coordinates [tex]\((1, 3)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point D: [tex]\((4, 6)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 6)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point E: [tex]\((16, 8)\)[/tex]
- Substitute [tex]\( x = 16 \)[/tex] into the equation: [tex]\( y = 2(16) \)[/tex]
- This gives [tex]\( y = 32 \)[/tex]
- The coordinates [tex]\((16, 8)\)[/tex] do not satisfy the equation, so this point is not on the line.
Point F: [tex]\((4, 2)\)[/tex]
- Substitute [tex]\( x = 4 \)[/tex] into the equation: [tex]\( y = 2(4) \)[/tex]
- This gives [tex]\( y = 8 \)[/tex]
- The coordinates [tex]\((4, 2)\)[/tex] do not satisfy the equation, so this point is not on the line.
After checking all the points, the ones that satisfy the equation [tex]\( y = 2x \)[/tex] and hence lie on the line are:
- [tex]\((3, 6)\)[/tex]
- [tex]\((5, 10)\)[/tex]
So, the points that are on the line [tex]\( y = 2x \)[/tex] are:
[tex]\[ \boxed{A. (3, 6) \text{ and } B. (5, 10)} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.