At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the system of linear equations:
[tex]\[ \begin{array}{l} 2x + 7y = 4 \\ -4x - 3y = 14 \end{array} \][/tex]
we follow these steps:
1. Multiply the first equation by 2 to make the coefficients of [tex]\( x \)[/tex] in the two equations opposites of each other:
[tex]\[ 2(2x + 7y) = 2(4) \][/tex]
This yields:
[tex]\[ 4x + 14y = 8 \][/tex]
2. Now, we have the modified system of equations:
[tex]\[ \begin{array}{l} 4x + 14y = 8 \\ -4x - 3y = 14 \end{array} \][/tex]
3. Add the two equations to eliminate [tex]\( x \)[/tex]:
[tex]\[ (4x + 14y) + (-4x - 3y) = 8 + 14 \][/tex]
Simplifying the left side and summing the right side, we obtain:
[tex]\[ 4x - 4x + 14y - 3y = 22 \\ 11y = 22 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{22}{11} \\ y = 2 \][/tex]
5. Substitute the value of [tex]\( y \)[/tex] back into the first equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 2x + 7(2) = 4 \\ 2x + 14 = 4 \\ 2x = 4 - 14 \\ 2x = -10 \\ x = \frac{-10}{2} \\ x = -5 \][/tex]
Therefore, the solution to the system of equations is the ordered pair:
[tex]\[ (-5,2) \][/tex]
[tex]\[ \begin{array}{l} 2x + 7y = 4 \\ -4x - 3y = 14 \end{array} \][/tex]
we follow these steps:
1. Multiply the first equation by 2 to make the coefficients of [tex]\( x \)[/tex] in the two equations opposites of each other:
[tex]\[ 2(2x + 7y) = 2(4) \][/tex]
This yields:
[tex]\[ 4x + 14y = 8 \][/tex]
2. Now, we have the modified system of equations:
[tex]\[ \begin{array}{l} 4x + 14y = 8 \\ -4x - 3y = 14 \end{array} \][/tex]
3. Add the two equations to eliminate [tex]\( x \)[/tex]:
[tex]\[ (4x + 14y) + (-4x - 3y) = 8 + 14 \][/tex]
Simplifying the left side and summing the right side, we obtain:
[tex]\[ 4x - 4x + 14y - 3y = 22 \\ 11y = 22 \][/tex]
4. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{22}{11} \\ y = 2 \][/tex]
5. Substitute the value of [tex]\( y \)[/tex] back into the first equation to solve for [tex]\( x \)[/tex]:
[tex]\[ 2x + 7(2) = 4 \\ 2x + 14 = 4 \\ 2x = 4 - 14 \\ 2x = -10 \\ x = \frac{-10}{2} \\ x = -5 \][/tex]
Therefore, the solution to the system of equations is the ordered pair:
[tex]\[ (-5,2) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.