Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the common ratio in a geometric sequence, we can use the information provided regarding the second and fourth terms.
1. Define the given terms:
- The second term ( [tex]\(A_2\)[/tex] ) of the geometric sequence is 20.
- The fourth term ( [tex]\(A_4\)[/tex] ) of the geometric sequence is 11.25.
2. Use the general formula for the [tex]\(n\)[/tex]th term in a geometric sequence:
[tex]\[ A_n = A_1 \cdot r^{(n-1)} \][/tex]
Where:
- [tex]\(A_n\)[/tex] is the [tex]\(n\)[/tex]th term,
- [tex]\(A_1\)[/tex] is the first term,
- [tex]\(r\)[/tex] is the common ratio,
- [tex]\(n\)[/tex] is the term number.
3. Write the equations for the given terms:
- For [tex]\(A_2\)[/tex]:
[tex]\[ A_2 = A_1 \cdot r^1 \][/tex]
Given [tex]\(A_2 = 20\)[/tex], we get:
[tex]\[ 20 = A_1 \cdot r \][/tex]
- For [tex]\(A_4\)[/tex]:
[tex]\[ A_4 = A_1 \cdot r^3 \][/tex]
Given [tex]\(A_4 = 11.25\)[/tex], we get:
[tex]\[ 11.25 = A_1 \cdot r^3 \][/tex]
4. Divide the second equation by the first equation to eliminate [tex]\(A_1\)[/tex]:
[tex]\[ \frac{A_1 \cdot r^3}{A_1 \cdot r} = \frac{11.25}{20} \][/tex]
Simplifies to:
[tex]\[ r^2 = \frac{11.25}{20} \][/tex]
5. Calculate [tex]\(r^2\)[/tex]:
[tex]\[ r^2 = \frac{45}{4} \div 20 = \frac{45}{80} = 0.5625 \][/tex]
6. Find [tex]\(r\)[/tex] by taking the square root of [tex]\(r^2\)[/tex]:
[tex]\[ r = \sqrt{0.5625} = 0.75 \][/tex]
Therefore, the common ratio [tex]\(r\)[/tex] in this geometric sequence is 0.75.
1. Define the given terms:
- The second term ( [tex]\(A_2\)[/tex] ) of the geometric sequence is 20.
- The fourth term ( [tex]\(A_4\)[/tex] ) of the geometric sequence is 11.25.
2. Use the general formula for the [tex]\(n\)[/tex]th term in a geometric sequence:
[tex]\[ A_n = A_1 \cdot r^{(n-1)} \][/tex]
Where:
- [tex]\(A_n\)[/tex] is the [tex]\(n\)[/tex]th term,
- [tex]\(A_1\)[/tex] is the first term,
- [tex]\(r\)[/tex] is the common ratio,
- [tex]\(n\)[/tex] is the term number.
3. Write the equations for the given terms:
- For [tex]\(A_2\)[/tex]:
[tex]\[ A_2 = A_1 \cdot r^1 \][/tex]
Given [tex]\(A_2 = 20\)[/tex], we get:
[tex]\[ 20 = A_1 \cdot r \][/tex]
- For [tex]\(A_4\)[/tex]:
[tex]\[ A_4 = A_1 \cdot r^3 \][/tex]
Given [tex]\(A_4 = 11.25\)[/tex], we get:
[tex]\[ 11.25 = A_1 \cdot r^3 \][/tex]
4. Divide the second equation by the first equation to eliminate [tex]\(A_1\)[/tex]:
[tex]\[ \frac{A_1 \cdot r^3}{A_1 \cdot r} = \frac{11.25}{20} \][/tex]
Simplifies to:
[tex]\[ r^2 = \frac{11.25}{20} \][/tex]
5. Calculate [tex]\(r^2\)[/tex]:
[tex]\[ r^2 = \frac{45}{4} \div 20 = \frac{45}{80} = 0.5625 \][/tex]
6. Find [tex]\(r\)[/tex] by taking the square root of [tex]\(r^2\)[/tex]:
[tex]\[ r = \sqrt{0.5625} = 0.75 \][/tex]
Therefore, the common ratio [tex]\(r\)[/tex] in this geometric sequence is 0.75.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.