Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Review the passage and solve the following question:

Find the horizontal asymptote(s) of the function.

[tex] f(x)=\frac{5x-2}{x^2+3x-18} [/tex]


Sagot :

To find the horizontal asymptote(s) of the function [tex]\( f(x) = \frac{5x - 2}{x^2 + 3x - 18} \)[/tex], we analyze the behavior of the function as [tex]\( x \)[/tex] approaches both positive and negative infinity.

Step-by-Step Solution:

1. Understand the Function:
The given function is [tex]\( f(x) = \frac{5x - 2}{x^2 + 3x - 18} \)[/tex]. Here, the degree of the polynomial in the numerator (which is 1, because of [tex]\( 5x - 2 \)[/tex]) is less than the degree of the polynomial in the denominator (which is 2, because of [tex]\( x^2 + 3x - 18 \)[/tex]).

2. Horizontal Asymptote Rules:
For rational functions:
- If the degree of the numerator is less than the degree of the denominator, the horizontal asymptote is [tex]\( y = 0 \)[/tex].
- If the degree of the numerator is equal to the degree of the denominator, the horizontal asymptote is [tex]\( y = \frac{\text{leading coefficient of the numerator}}{\text{leading coefficient of the denominator}} \)[/tex].
- If the degree of the numerator is greater than the degree of the denominator, there is no horizontal asymptote (though there might be an oblique asymptote).

3. Applying the Rule:
In this case, since the degree of the numerator ([tex]\( 5x - 2 \)[/tex] which has degree 1) is less than the degree of the denominator ([tex]\( x^2 + 3x - 18 \)[/tex] which has degree 2), we apply the first rule. Therefore, the horizontal asymptote is [tex]\( y = 0 \)[/tex].

4. Conclusion:
As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( +\infty \)[/tex]) or negative infinity ([tex]\( -\infty \)[/tex]), the value of [tex]\( f(x) \)[/tex] approaches 0. Hence, the horizontal asymptote is [tex]\( y = 0 \)[/tex].

The function [tex]\( f(x) = \frac{5x - 2}{x^2 + 3x - 18} \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].