Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the exact value of [tex]\(\cos \theta\)[/tex] given the information [tex]\(\sin \theta = -\frac{1}{5}\)[/tex] and [tex]\(\pi < \theta < \frac{3\pi}{2}\)[/tex]:
1. Identify the quadrant: Based on the given range [tex]\(\pi < \theta < \frac{3\pi}{2}\)[/tex], we know [tex]\(\theta\)[/tex] is in the third quadrant. In this quadrant, both sine and cosine values are negative.
2. Use the Pythagorean identity: Recall the identity [tex]\(\sin^2 \theta + \cos^2 \theta = 1\)[/tex]. Substitute the given sine value into the equation:
[tex]\[ \left(-\frac{1}{5}\right)^2 + \cos^2 \theta = 1 \][/tex]
Simplify:
[tex]\[ \frac{1}{25} + \cos^2 \theta = 1 \][/tex]
[tex]\[ \cos^2 \theta = 1 - \frac{1}{25} \][/tex]
[tex]\[ \cos^2 \theta = \frac{25}{25} - \frac{1}{25} \][/tex]
[tex]\[ \cos^2 \theta = \frac{24}{25} \][/tex]
3. Solve for [tex]\(\cos \theta\)[/tex]: Since [tex]\(\cos \theta\)[/tex] can be positive or negative, but we know from the quadrant (third quadrant) that [tex]\(\cos \theta\)[/tex] is negative:
[tex]\[ \cos \theta = -\sqrt{\frac{24}{25}} \][/tex]
Simplify the square root:
[tex]\[ \cos \theta = -\frac{\sqrt{24}}{5} \][/tex]
Further simplify [tex]\(\sqrt{24}\)[/tex]:
[tex]\[ \sqrt{24} = \sqrt{4 \cdot 6} = \sqrt{4} \cdot \sqrt{6} = 2\sqrt{6} \][/tex]
Therefore:
[tex]\[ \cos \theta = -\frac{2\sqrt{6}}{5} \][/tex]
Hence, the exact value of [tex]\(\cos \theta\)[/tex] is [tex]\(-\frac{2\sqrt{6}}{5}\)[/tex].
4. Match with the choices:
The correct answer is:
- (a) [tex]\(-\frac{2 \sqrt{6}}{5}\)[/tex]
This matches our calculated value.
1. Identify the quadrant: Based on the given range [tex]\(\pi < \theta < \frac{3\pi}{2}\)[/tex], we know [tex]\(\theta\)[/tex] is in the third quadrant. In this quadrant, both sine and cosine values are negative.
2. Use the Pythagorean identity: Recall the identity [tex]\(\sin^2 \theta + \cos^2 \theta = 1\)[/tex]. Substitute the given sine value into the equation:
[tex]\[ \left(-\frac{1}{5}\right)^2 + \cos^2 \theta = 1 \][/tex]
Simplify:
[tex]\[ \frac{1}{25} + \cos^2 \theta = 1 \][/tex]
[tex]\[ \cos^2 \theta = 1 - \frac{1}{25} \][/tex]
[tex]\[ \cos^2 \theta = \frac{25}{25} - \frac{1}{25} \][/tex]
[tex]\[ \cos^2 \theta = \frac{24}{25} \][/tex]
3. Solve for [tex]\(\cos \theta\)[/tex]: Since [tex]\(\cos \theta\)[/tex] can be positive or negative, but we know from the quadrant (third quadrant) that [tex]\(\cos \theta\)[/tex] is negative:
[tex]\[ \cos \theta = -\sqrt{\frac{24}{25}} \][/tex]
Simplify the square root:
[tex]\[ \cos \theta = -\frac{\sqrt{24}}{5} \][/tex]
Further simplify [tex]\(\sqrt{24}\)[/tex]:
[tex]\[ \sqrt{24} = \sqrt{4 \cdot 6} = \sqrt{4} \cdot \sqrt{6} = 2\sqrt{6} \][/tex]
Therefore:
[tex]\[ \cos \theta = -\frac{2\sqrt{6}}{5} \][/tex]
Hence, the exact value of [tex]\(\cos \theta\)[/tex] is [tex]\(-\frac{2\sqrt{6}}{5}\)[/tex].
4. Match with the choices:
The correct answer is:
- (a) [tex]\(-\frac{2 \sqrt{6}}{5}\)[/tex]
This matches our calculated value.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.