Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine how far from the vertical beam the lower end of the support beam should be placed along the horizontal floor, let's break down the problem using trigonometry.
We are given the following information:
1. The angle of elevation (A) is [tex]\( 28^\circ \)[/tex].
2. The height of the vertical beam above the horizontal floor (opposite to angle A) is 1.6 meters.
We need to find the distance from the vertical beam to the lower end of the support beam along the floor (let's call this distance [tex]\( d \)[/tex]).
Since this forms a right triangle, we can use the tangent function, which relates the angle of elevation, the opposite side (height of the vertical beam), and the adjacent side (distance along the horizontal floor, [tex]\( d \)[/tex]):
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
In our case:
- [tex]\(\theta = 28^\circ\)[/tex]
- Opposite side = height of the vertical beam = 1.6 meters
- Adjacent side = distance [tex]\( d \)[/tex]
Therefore,
[tex]\[ \tan(28^\circ) = \frac{1.6}{d} \][/tex]
To solve for [tex]\( d \)[/tex], we rearrange the equation:
[tex]\[ d = \frac{1.6}{\tan(28^\circ)} \][/tex]
Using the provided answer, the tangent of [tex]\( 28^\circ \)[/tex] in radians is approximately 0.4886921905584123 radians (since 28 degrees converted to radians is 0.4886921905584123 radians). We know:
[tex]\[ d \approx \frac{1.6}{\tan(28^\circ)} \approx 3.0091623445541313 \text{ meters} \][/tex]
So, the approximate distance from the vertical beam to the lower end of the support beam along the horizontal floor should be:
[tex]\[ \boxed{3.0 \text{ meters}} \][/tex]
Hence, the correct answer is 3.0 meters.
We are given the following information:
1. The angle of elevation (A) is [tex]\( 28^\circ \)[/tex].
2. The height of the vertical beam above the horizontal floor (opposite to angle A) is 1.6 meters.
We need to find the distance from the vertical beam to the lower end of the support beam along the floor (let's call this distance [tex]\( d \)[/tex]).
Since this forms a right triangle, we can use the tangent function, which relates the angle of elevation, the opposite side (height of the vertical beam), and the adjacent side (distance along the horizontal floor, [tex]\( d \)[/tex]):
[tex]\[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \][/tex]
In our case:
- [tex]\(\theta = 28^\circ\)[/tex]
- Opposite side = height of the vertical beam = 1.6 meters
- Adjacent side = distance [tex]\( d \)[/tex]
Therefore,
[tex]\[ \tan(28^\circ) = \frac{1.6}{d} \][/tex]
To solve for [tex]\( d \)[/tex], we rearrange the equation:
[tex]\[ d = \frac{1.6}{\tan(28^\circ)} \][/tex]
Using the provided answer, the tangent of [tex]\( 28^\circ \)[/tex] in radians is approximately 0.4886921905584123 radians (since 28 degrees converted to radians is 0.4886921905584123 radians). We know:
[tex]\[ d \approx \frac{1.6}{\tan(28^\circ)} \approx 3.0091623445541313 \text{ meters} \][/tex]
So, the approximate distance from the vertical beam to the lower end of the support beam along the horizontal floor should be:
[tex]\[ \boxed{3.0 \text{ meters}} \][/tex]
Hence, the correct answer is 3.0 meters.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.