Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
In this problem, we need to find which equation represents the line [tex]\(\overleftrightarrow{ AC }\)[/tex] that is perpendicular to the line [tex]\(\overleftrightarrow{ DB }\)[/tex]. The given equation of [tex]\(\overleftrightarrow{ DB }\)[/tex] is:
[tex]\[ \frac{1}{2}x + 2y = 12 \][/tex]
First, let's convert this equation into slope-intercept form ([tex]\(y = mx + b\)[/tex]), where [tex]\(m\)[/tex] represents the slope of the line.
[tex]\[ \frac{1}{2}x + 2y = 12 \][/tex]
Isolate [tex]\(y\)[/tex]:
[tex]\[ 2y = -\frac{1}{2}x + 12 \][/tex]
Divide both sides by 2:
[tex]\[ y = -\frac{1}{4}x + 6 \][/tex]
So, the slope of line [tex]\(\overleftrightarrow{ DB }\)[/tex] is [tex]\(-\frac{1}{4}\)[/tex].
Since lines [tex]\(\overleftrightarrow{ DB }\)[/tex] and [tex]\(\overleftrightarrow{ AC }\)[/tex] are perpendicular, the slope of [tex]\(\overleftrightarrow{ AC }\)[/tex] should be the negative reciprocal of [tex]\(-\frac{1}{4}\)[/tex]. To find the negative reciprocal, we flip the fraction and change the sign.
The negative reciprocal of [tex]\(-\frac{1}{4}\)[/tex] is:
[tex]\[ 4 \][/tex]
Now we need to find which of the given options has a slope of 4:
1. [tex]\(-4x + y = -28\)[/tex]
Convert to slope-intercept form:
[tex]\[ y = 4x - 28 \][/tex]
The slope of this line is 4.
2. [tex]\(2x + y = 14\)[/tex]
Convert to slope-intercept form:
[tex]\[ y = -2x + 14 \][/tex]
The slope of this line is -2.
3. [tex]\(2x + 8y = 12\)[/tex]
Convert to slope-intercept form:
[tex]\[ 8y = -2x + 12 \][/tex]
[tex]\[ y = -\frac{1}{4}x + \frac{3}{2} \][/tex]
The slope of this line is -[tex]\(\frac{1}{4}\)[/tex].
4. [tex]\(4x - y = -28\)[/tex]
Convert to slope-intercept form:
[tex]\[ -y = -4x - 28 \][/tex]
[tex]\[ y = 4x + 28 \][/tex]
The slope of this line is 4.
From the above conversions, we see that both option 1 ([tex]\(-4x + y = -28\)[/tex]) and option 4 ([tex]\(4x - y = -28\)[/tex]) have a slope of 4, which matches the requirement for being perpendicular to the line [tex]\(\overleftrightarrow{ DB }\)[/tex].
Therefore, the correct equations of [tex]\(\overleftrightarrow{ AC }\)[/tex] are:
[tex]\[ \boxed{-4x + y = -28 \ \text{and} \ 4x - y = -28} \][/tex]
[tex]\[ \frac{1}{2}x + 2y = 12 \][/tex]
First, let's convert this equation into slope-intercept form ([tex]\(y = mx + b\)[/tex]), where [tex]\(m\)[/tex] represents the slope of the line.
[tex]\[ \frac{1}{2}x + 2y = 12 \][/tex]
Isolate [tex]\(y\)[/tex]:
[tex]\[ 2y = -\frac{1}{2}x + 12 \][/tex]
Divide both sides by 2:
[tex]\[ y = -\frac{1}{4}x + 6 \][/tex]
So, the slope of line [tex]\(\overleftrightarrow{ DB }\)[/tex] is [tex]\(-\frac{1}{4}\)[/tex].
Since lines [tex]\(\overleftrightarrow{ DB }\)[/tex] and [tex]\(\overleftrightarrow{ AC }\)[/tex] are perpendicular, the slope of [tex]\(\overleftrightarrow{ AC }\)[/tex] should be the negative reciprocal of [tex]\(-\frac{1}{4}\)[/tex]. To find the negative reciprocal, we flip the fraction and change the sign.
The negative reciprocal of [tex]\(-\frac{1}{4}\)[/tex] is:
[tex]\[ 4 \][/tex]
Now we need to find which of the given options has a slope of 4:
1. [tex]\(-4x + y = -28\)[/tex]
Convert to slope-intercept form:
[tex]\[ y = 4x - 28 \][/tex]
The slope of this line is 4.
2. [tex]\(2x + y = 14\)[/tex]
Convert to slope-intercept form:
[tex]\[ y = -2x + 14 \][/tex]
The slope of this line is -2.
3. [tex]\(2x + 8y = 12\)[/tex]
Convert to slope-intercept form:
[tex]\[ 8y = -2x + 12 \][/tex]
[tex]\[ y = -\frac{1}{4}x + \frac{3}{2} \][/tex]
The slope of this line is -[tex]\(\frac{1}{4}\)[/tex].
4. [tex]\(4x - y = -28\)[/tex]
Convert to slope-intercept form:
[tex]\[ -y = -4x - 28 \][/tex]
[tex]\[ y = 4x + 28 \][/tex]
The slope of this line is 4.
From the above conversions, we see that both option 1 ([tex]\(-4x + y = -28\)[/tex]) and option 4 ([tex]\(4x - y = -28\)[/tex]) have a slope of 4, which matches the requirement for being perpendicular to the line [tex]\(\overleftrightarrow{ DB }\)[/tex].
Therefore, the correct equations of [tex]\(\overleftrightarrow{ AC }\)[/tex] are:
[tex]\[ \boxed{-4x + y = -28 \ \text{and} \ 4x - y = -28} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.