Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the equation [tex]\(x = \sqrt{x + 30}\)[/tex] for [tex]\(x\)[/tex], follow these steps:
1. Isolate the square root: The square root is already isolated in the given equation [tex]\(x = \sqrt{x + 30}\)[/tex].
2. Square both sides to eliminate the square root. Squaring both sides of the equation yields:
[tex]\[ x^2 = (\sqrt{x + 30})^2 \][/tex]
Which simplifies to:
[tex]\[ x^2 = x + 30 \][/tex]
3. Rearrange the equation to form a standard quadratic equation. To do this, move all terms to one side of the equation:
[tex]\[ x^2 - x - 30 = 0 \][/tex]
4. Factor the quadratic equation [tex]\(x^2 - x - 30 = 0\)[/tex]. To factor this, we need to find two numbers that multiply to [tex]\(-30\)[/tex] and add up to [tex]\(-1\)[/tex]. Those numbers are [tex]\(6\)[/tex] and [tex]\(-5\)[/tex]:
[tex]\[ x^2 - x - 30 = (x - 6)(x + 5) = 0 \][/tex]
5. Set each factor equal to zero to solve for [tex]\(x\)[/tex]:
[tex]\[ x - 6 = 0 \quad \text{or} \quad x + 5 = 0 \][/tex]
6. Solve each equation:
[tex]\[ x - 6 = 0 \implies x = 6 \][/tex]
[tex]\[ x + 5 = 0 \implies x = -5 \][/tex]
7. Check each potential solution in the original equation to ensure they are valid.
- For [tex]\(x = 6\)[/tex]:
[tex]\[ 6 = \sqrt{6 + 30} \][/tex]
[tex]\[ 6 = \sqrt{36} \][/tex]
[tex]\[ 6 = 6 \][/tex]
This is true.
- For [tex]\(x = -5\)[/tex]:
[tex]\[ -5 = \sqrt{-5 + 30} \][/tex]
[tex]\[ -5 = \sqrt{25} \][/tex]
[tex]\[ -5 = 5 \][/tex]
This is false, as [tex]\(-5\)[/tex] does not equal [tex]\(5\)[/tex].
Hence, the only valid solution is:
[tex]\[ x = 6 \][/tex]
1. Isolate the square root: The square root is already isolated in the given equation [tex]\(x = \sqrt{x + 30}\)[/tex].
2. Square both sides to eliminate the square root. Squaring both sides of the equation yields:
[tex]\[ x^2 = (\sqrt{x + 30})^2 \][/tex]
Which simplifies to:
[tex]\[ x^2 = x + 30 \][/tex]
3. Rearrange the equation to form a standard quadratic equation. To do this, move all terms to one side of the equation:
[tex]\[ x^2 - x - 30 = 0 \][/tex]
4. Factor the quadratic equation [tex]\(x^2 - x - 30 = 0\)[/tex]. To factor this, we need to find two numbers that multiply to [tex]\(-30\)[/tex] and add up to [tex]\(-1\)[/tex]. Those numbers are [tex]\(6\)[/tex] and [tex]\(-5\)[/tex]:
[tex]\[ x^2 - x - 30 = (x - 6)(x + 5) = 0 \][/tex]
5. Set each factor equal to zero to solve for [tex]\(x\)[/tex]:
[tex]\[ x - 6 = 0 \quad \text{or} \quad x + 5 = 0 \][/tex]
6. Solve each equation:
[tex]\[ x - 6 = 0 \implies x = 6 \][/tex]
[tex]\[ x + 5 = 0 \implies x = -5 \][/tex]
7. Check each potential solution in the original equation to ensure they are valid.
- For [tex]\(x = 6\)[/tex]:
[tex]\[ 6 = \sqrt{6 + 30} \][/tex]
[tex]\[ 6 = \sqrt{36} \][/tex]
[tex]\[ 6 = 6 \][/tex]
This is true.
- For [tex]\(x = -5\)[/tex]:
[tex]\[ -5 = \sqrt{-5 + 30} \][/tex]
[tex]\[ -5 = \sqrt{25} \][/tex]
[tex]\[ -5 = 5 \][/tex]
This is false, as [tex]\(-5\)[/tex] does not equal [tex]\(5\)[/tex].
Hence, the only valid solution is:
[tex]\[ x = 6 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.