Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's go through the steps to arrive at the expression [tex]\( x \cos(x) - \sin(x) \)[/tex].
### Step-by-Step Solution:
1. Identify Variables and Constants:
- We have a single variable in the expression, which is [tex]\( x \)[/tex].
2. Understanding Trigonometric Functions:
- The components of the expression are trigonometric functions involving [tex]\( x \)[/tex]. Specifically, we have [tex]\( \cos(x) \)[/tex] and [tex]\( \sin(x) \)[/tex].
3. Expression Components:
- We are given two terms:
1. [tex]\( x \cos(x) \)[/tex]
2. [tex]\( - \sin(x) \)[/tex]
4. Combine Terms:
- Since these are the two terms of the expression, we combine them to write the full expression.
### Final Expression:
The final expression that results from combining the components [tex]\( x \cos(x) \)[/tex] and [tex]\( - \sin(x) \)[/tex] is:
[tex]\[ x \cos(x) - \sin(x) \][/tex]
That’s the combined and simplified form of the expression involving the variable [tex]\( x \)[/tex] with trigonometric functions [tex]\( \cos \)[/tex] and [tex]\( \sin \)[/tex].
### Step-by-Step Solution:
1. Identify Variables and Constants:
- We have a single variable in the expression, which is [tex]\( x \)[/tex].
2. Understanding Trigonometric Functions:
- The components of the expression are trigonometric functions involving [tex]\( x \)[/tex]. Specifically, we have [tex]\( \cos(x) \)[/tex] and [tex]\( \sin(x) \)[/tex].
3. Expression Components:
- We are given two terms:
1. [tex]\( x \cos(x) \)[/tex]
2. [tex]\( - \sin(x) \)[/tex]
4. Combine Terms:
- Since these are the two terms of the expression, we combine them to write the full expression.
### Final Expression:
The final expression that results from combining the components [tex]\( x \cos(x) \)[/tex] and [tex]\( - \sin(x) \)[/tex] is:
[tex]\[ x \cos(x) - \sin(x) \][/tex]
That’s the combined and simplified form of the expression involving the variable [tex]\( x \)[/tex] with trigonometric functions [tex]\( \cos \)[/tex] and [tex]\( \sin \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.