Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's go through the steps to arrive at the expression [tex]\( x \cos(x) - \sin(x) \)[/tex].
### Step-by-Step Solution:
1. Identify Variables and Constants:
- We have a single variable in the expression, which is [tex]\( x \)[/tex].
2. Understanding Trigonometric Functions:
- The components of the expression are trigonometric functions involving [tex]\( x \)[/tex]. Specifically, we have [tex]\( \cos(x) \)[/tex] and [tex]\( \sin(x) \)[/tex].
3. Expression Components:
- We are given two terms:
1. [tex]\( x \cos(x) \)[/tex]
2. [tex]\( - \sin(x) \)[/tex]
4. Combine Terms:
- Since these are the two terms of the expression, we combine them to write the full expression.
### Final Expression:
The final expression that results from combining the components [tex]\( x \cos(x) \)[/tex] and [tex]\( - \sin(x) \)[/tex] is:
[tex]\[ x \cos(x) - \sin(x) \][/tex]
That’s the combined and simplified form of the expression involving the variable [tex]\( x \)[/tex] with trigonometric functions [tex]\( \cos \)[/tex] and [tex]\( \sin \)[/tex].
### Step-by-Step Solution:
1. Identify Variables and Constants:
- We have a single variable in the expression, which is [tex]\( x \)[/tex].
2. Understanding Trigonometric Functions:
- The components of the expression are trigonometric functions involving [tex]\( x \)[/tex]. Specifically, we have [tex]\( \cos(x) \)[/tex] and [tex]\( \sin(x) \)[/tex].
3. Expression Components:
- We are given two terms:
1. [tex]\( x \cos(x) \)[/tex]
2. [tex]\( - \sin(x) \)[/tex]
4. Combine Terms:
- Since these are the two terms of the expression, we combine them to write the full expression.
### Final Expression:
The final expression that results from combining the components [tex]\( x \cos(x) \)[/tex] and [tex]\( - \sin(x) \)[/tex] is:
[tex]\[ x \cos(x) - \sin(x) \][/tex]
That’s the combined and simplified form of the expression involving the variable [tex]\( x \)[/tex] with trigonometric functions [tex]\( \cos \)[/tex] and [tex]\( \sin \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.