Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! To find the derivative of [tex]\(\sec^2(x)\)[/tex], follow these steps:
1. Identify the function to be differentiated: The function we're dealing with is [tex]\(\sec^2(x)\)[/tex].
2. Rewrite the function using the chain rule: The chain rule is often used when differentiating composite functions. Here, we can write [tex]\(\sec^2(x)\)[/tex] as [tex]\((\sec(x))^2\)[/tex].
3. Differentiate the outer function: Let [tex]\(u = \sec(x)\)[/tex]. Then our function becomes [tex]\(u^2\)[/tex]. The derivative of [tex]\(u^2\)[/tex] with respect to [tex]\(u\)[/tex] is [tex]\(2u\)[/tex].
4. Differentiate the inner function: Next, we need to differentiate [tex]\(u = \sec(x)\)[/tex] with respect to [tex]\(x\)[/tex]. The derivative of [tex]\(\sec(x)\)[/tex] is [tex]\(\sec(x) \tan(x)\)[/tex].
5. Apply the chain rule: Multiply the derivative of the outer function by the derivative of the inner function:
[tex]\[ \frac{d}{dx} (\sec^2(x)) = 2 \sec(x) \cdot \sec(x) \tan(x) \][/tex]
6. Simplify the resulting expression: Combining these together, we get:
[tex]\[ \frac{d}{dx} (\sec^2(x)) = 2 \sec(x) \cdot \sec(x) \tan(x) = 2 \sec^2(x) \tan(x) \][/tex]
Therefore, the derivative of [tex]\(\sec^2(x)\)[/tex] is:
[tex]\[ \boxed{2 \sec^2(x) \tan(x)} \][/tex]
1. Identify the function to be differentiated: The function we're dealing with is [tex]\(\sec^2(x)\)[/tex].
2. Rewrite the function using the chain rule: The chain rule is often used when differentiating composite functions. Here, we can write [tex]\(\sec^2(x)\)[/tex] as [tex]\((\sec(x))^2\)[/tex].
3. Differentiate the outer function: Let [tex]\(u = \sec(x)\)[/tex]. Then our function becomes [tex]\(u^2\)[/tex]. The derivative of [tex]\(u^2\)[/tex] with respect to [tex]\(u\)[/tex] is [tex]\(2u\)[/tex].
4. Differentiate the inner function: Next, we need to differentiate [tex]\(u = \sec(x)\)[/tex] with respect to [tex]\(x\)[/tex]. The derivative of [tex]\(\sec(x)\)[/tex] is [tex]\(\sec(x) \tan(x)\)[/tex].
5. Apply the chain rule: Multiply the derivative of the outer function by the derivative of the inner function:
[tex]\[ \frac{d}{dx} (\sec^2(x)) = 2 \sec(x) \cdot \sec(x) \tan(x) \][/tex]
6. Simplify the resulting expression: Combining these together, we get:
[tex]\[ \frac{d}{dx} (\sec^2(x)) = 2 \sec(x) \cdot \sec(x) \tan(x) = 2 \sec^2(x) \tan(x) \][/tex]
Therefore, the derivative of [tex]\(\sec^2(x)\)[/tex] is:
[tex]\[ \boxed{2 \sec^2(x) \tan(x)} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.