Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To differentiate the function [tex]\( f(x) = \tan^2(x) \)[/tex], follow these steps:
1. Rewrite the function in a more convenient form:
[tex]\[ f(x) = (\tan(x))^2 \][/tex]
2. Apply the chain rule:
The chain rule states that if you have a composite function [tex]\( (g(h(x))) \)[/tex], the derivative is:
[tex]\[ \frac{d}{dx}[g(h(x))] = g'(h(x)) \cdot h'(x) \][/tex]
For our function, [tex]\( g(u) = u^2 \)[/tex] and [tex]\( u = \tan(x) \)[/tex]. So we first need to find the derivatives of these components.
3. Differentiate the outer function [tex]\( g(u) = u^2 \)[/tex]:
The derivative of [tex]\( u^2 \)[/tex] with respect to [tex]\( u \)[/tex] is:
[tex]\[ g'(u) = 2u \][/tex]
4. Differentiate the inner function [tex]\( u = \tan(x) \)[/tex]:
The derivative of [tex]\( \tan(x) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan(x)] = \sec^2(x) \][/tex]
5. Combine the results using the chain rule:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = g'(u) \cdot \frac{d}{dx}[u] \][/tex]
Substitute [tex]\( g'(u) \)[/tex] and [tex]\( \frac{d}{dx}[u] \)[/tex]:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
6. Simplify the expression:
Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], so:
[tex]\[ \sec^2(x) = \frac{1}{\cos^2(x)} \][/tex]
Thus,
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
Since [tex]\( \sec^2(x) = 1 + \tan^2(x) \)[/tex], we can substitute this to get a more detailed expression:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot (1 + \tan^2(x)) \][/tex]
7. Final expression:
The derivative of [tex]\( \tan^2(x) \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) \][/tex]
Which can also be written as:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) = (2\tan(x)\tan^2(x) + 2\tan(x)) \][/tex]
Thus, the final derivative is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x)^2 + 2)\tan(x) \][/tex]
1. Rewrite the function in a more convenient form:
[tex]\[ f(x) = (\tan(x))^2 \][/tex]
2. Apply the chain rule:
The chain rule states that if you have a composite function [tex]\( (g(h(x))) \)[/tex], the derivative is:
[tex]\[ \frac{d}{dx}[g(h(x))] = g'(h(x)) \cdot h'(x) \][/tex]
For our function, [tex]\( g(u) = u^2 \)[/tex] and [tex]\( u = \tan(x) \)[/tex]. So we first need to find the derivatives of these components.
3. Differentiate the outer function [tex]\( g(u) = u^2 \)[/tex]:
The derivative of [tex]\( u^2 \)[/tex] with respect to [tex]\( u \)[/tex] is:
[tex]\[ g'(u) = 2u \][/tex]
4. Differentiate the inner function [tex]\( u = \tan(x) \)[/tex]:
The derivative of [tex]\( \tan(x) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan(x)] = \sec^2(x) \][/tex]
5. Combine the results using the chain rule:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = g'(u) \cdot \frac{d}{dx}[u] \][/tex]
Substitute [tex]\( g'(u) \)[/tex] and [tex]\( \frac{d}{dx}[u] \)[/tex]:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
6. Simplify the expression:
Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], so:
[tex]\[ \sec^2(x) = \frac{1}{\cos^2(x)} \][/tex]
Thus,
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
Since [tex]\( \sec^2(x) = 1 + \tan^2(x) \)[/tex], we can substitute this to get a more detailed expression:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot (1 + \tan^2(x)) \][/tex]
7. Final expression:
The derivative of [tex]\( \tan^2(x) \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) \][/tex]
Which can also be written as:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) = (2\tan(x)\tan^2(x) + 2\tan(x)) \][/tex]
Thus, the final derivative is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x)^2 + 2)\tan(x) \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.