Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To differentiate the function [tex]\( f(x) = \tan^2(x) \)[/tex], follow these steps:
1. Rewrite the function in a more convenient form:
[tex]\[ f(x) = (\tan(x))^2 \][/tex]
2. Apply the chain rule:
The chain rule states that if you have a composite function [tex]\( (g(h(x))) \)[/tex], the derivative is:
[tex]\[ \frac{d}{dx}[g(h(x))] = g'(h(x)) \cdot h'(x) \][/tex]
For our function, [tex]\( g(u) = u^2 \)[/tex] and [tex]\( u = \tan(x) \)[/tex]. So we first need to find the derivatives of these components.
3. Differentiate the outer function [tex]\( g(u) = u^2 \)[/tex]:
The derivative of [tex]\( u^2 \)[/tex] with respect to [tex]\( u \)[/tex] is:
[tex]\[ g'(u) = 2u \][/tex]
4. Differentiate the inner function [tex]\( u = \tan(x) \)[/tex]:
The derivative of [tex]\( \tan(x) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan(x)] = \sec^2(x) \][/tex]
5. Combine the results using the chain rule:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = g'(u) \cdot \frac{d}{dx}[u] \][/tex]
Substitute [tex]\( g'(u) \)[/tex] and [tex]\( \frac{d}{dx}[u] \)[/tex]:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
6. Simplify the expression:
Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], so:
[tex]\[ \sec^2(x) = \frac{1}{\cos^2(x)} \][/tex]
Thus,
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
Since [tex]\( \sec^2(x) = 1 + \tan^2(x) \)[/tex], we can substitute this to get a more detailed expression:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot (1 + \tan^2(x)) \][/tex]
7. Final expression:
The derivative of [tex]\( \tan^2(x) \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) \][/tex]
Which can also be written as:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) = (2\tan(x)\tan^2(x) + 2\tan(x)) \][/tex]
Thus, the final derivative is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x)^2 + 2)\tan(x) \][/tex]
1. Rewrite the function in a more convenient form:
[tex]\[ f(x) = (\tan(x))^2 \][/tex]
2. Apply the chain rule:
The chain rule states that if you have a composite function [tex]\( (g(h(x))) \)[/tex], the derivative is:
[tex]\[ \frac{d}{dx}[g(h(x))] = g'(h(x)) \cdot h'(x) \][/tex]
For our function, [tex]\( g(u) = u^2 \)[/tex] and [tex]\( u = \tan(x) \)[/tex]. So we first need to find the derivatives of these components.
3. Differentiate the outer function [tex]\( g(u) = u^2 \)[/tex]:
The derivative of [tex]\( u^2 \)[/tex] with respect to [tex]\( u \)[/tex] is:
[tex]\[ g'(u) = 2u \][/tex]
4. Differentiate the inner function [tex]\( u = \tan(x) \)[/tex]:
The derivative of [tex]\( \tan(x) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan(x)] = \sec^2(x) \][/tex]
5. Combine the results using the chain rule:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = g'(u) \cdot \frac{d}{dx}[u] \][/tex]
Substitute [tex]\( g'(u) \)[/tex] and [tex]\( \frac{d}{dx}[u] \)[/tex]:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
6. Simplify the expression:
Recall that [tex]\( \sec(x) = \frac{1}{\cos(x)} \)[/tex], so:
[tex]\[ \sec^2(x) = \frac{1}{\cos^2(x)} \][/tex]
Thus,
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot \sec^2(x) \][/tex]
Since [tex]\( \sec^2(x) = 1 + \tan^2(x) \)[/tex], we can substitute this to get a more detailed expression:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = 2\tan(x) \cdot (1 + \tan^2(x)) \][/tex]
7. Final expression:
The derivative of [tex]\( \tan^2(x) \)[/tex] is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) \][/tex]
Which can also be written as:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x))(1 + \tan^2(x)) = (2\tan(x)\tan^2(x) + 2\tan(x)) \][/tex]
Thus, the final derivative is:
[tex]\[ \frac{d}{dx}[\tan^2(x)] = (2\tan(x)^2 + 2)\tan(x) \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.