At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
The set of all 3x1 matrices of the form \(\begin{bmatrix} x \\ 2z - y \\ 3 \end{bmatrix}\), denoted as \(V\), does not form a vector space because it fails to satisfy one of the vector space axioms, specifically closure under scalar multiplication.
To demonstrate:
1. **Closure under Scalar Multiplication**: For \(V\) to be a vector space, multiplying any matrix in \(V\) by a scalar should still result in a matrix that belongs to \(V\).
Consider a matrix \( \mathbf{v} = \begin{bmatrix} x \\ 2z - y \\ 3 \end{bmatrix} \) in \(V\). Let's perform scalar multiplication:
Let \( \alpha \) be a scalar. Then \( \alpha \mathbf{v} = \alpha \begin{bmatrix} x \\ 2z - y \\ 3 \end{bmatrix} = \begin{bmatrix} \alpha x \\ \alpha(2z - y) \\ 3\alpha \end{bmatrix} \).
Now, check if \( \alpha \mathbf{v} \) still fits the form \( \begin{bmatrix} x \\ 2z - y \\ 3 \end{bmatrix} \):
- The first entry of \( \alpha \mathbf{v} \) is \( \alpha x \), which is of the form \( x \). This satisfies the first entry condition.
- The second entry of \( \alpha \mathbf{v} \) is \( \alpha(2z - y) \), which is \( 2\alpha z - \alpha y \). This must match \( 2z - y \) for all \( \alpha \), not just a specific value.
To demonstrate:
1. **Closure under Scalar Multiplication**: For \(V\) to be a vector space, multiplying any matrix in \(V\) by a scalar should still result in a matrix that belongs to \(V\).
Consider a matrix \( \mathbf{v} = \begin{bmatrix} x \\ 2z - y \\ 3 \end{bmatrix} \) in \(V\). Let's perform scalar multiplication:
Let \( \alpha \) be a scalar. Then \( \alpha \mathbf{v} = \alpha \begin{bmatrix} x \\ 2z - y \\ 3 \end{bmatrix} = \begin{bmatrix} \alpha x \\ \alpha(2z - y) \\ 3\alpha \end{bmatrix} \).
Now, check if \( \alpha \mathbf{v} \) still fits the form \( \begin{bmatrix} x \\ 2z - y \\ 3 \end{bmatrix} \):
- The first entry of \( \alpha \mathbf{v} \) is \( \alpha x \), which is of the form \( x \). This satisfies the first entry condition.
- The second entry of \( \alpha \mathbf{v} \) is \( \alpha(2z - y) \), which is \( 2\alpha z - \alpha y \). This must match \( 2z - y \) for all \( \alpha \), not just a specific value.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.