Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\(\frac{3n + 3}{5} = \frac{5n - 1}{9}\)[/tex], we need to find the value of [tex]\(n\)[/tex] that satisfies this equation. Here's a detailed, step-by-step solution:
1. First, clear the fractions by finding a common denominator.
- The common denominator for 5 and 9 is 45.
- Multiply both sides of the equation by 45 to eliminate the denominators.
[tex]\[ \begin{aligned} 45 \cdot \frac{3n + 3}{5} & = 45 \cdot \frac{5n - 1}{9} \\ 45 \cdot \frac{3n + 3}{5} & = 45 \cdot \frac{5n - 1}{9} \end{aligned} \][/tex]
2. Distribute the 45 to both terms inside each fraction:
[tex]\[ \begin{aligned} 45 \cdot \frac{3n + 3}{5} & = 45 \cdot \frac{5n - 1}{9} \\ \left(\frac{45}{5}\right) \cdot (3n + 3) & = \left(\frac{45}{9}\right) \cdot (5n - 1) \end{aligned} \][/tex]
3. Simplify the coefficients:
[tex]\[ \begin{aligned} 9(3n + 3) & = 5(5n - 1) \\ 27n + 27 & = 25n - 5 \end{aligned} \][/tex]
4. Move all terms involving [tex]\(n\)[/tex] to one side of the equation and constants to the other:
[tex]\[ \begin{aligned} 27n + 27 &= 25n - 5 \\ 27n - 25n &= -5 - 27 \\ 2n &= -32 \end{aligned} \][/tex]
5. Solve for [tex]\(n\)[/tex]:
[tex]\[ \begin{aligned} 2n &= -32 \\ n &= \frac{-32}{2} \\ n &= -16 \end{aligned} \][/tex]
6. Check the potential solutions among the given choices: [tex]\(n = -16\)[/tex], [tex]\(n = -2\)[/tex], [tex]\(n = 2\)[/tex], and [tex]\(n = 16\)[/tex]
- The correct answer is [tex]\(n = -16\)[/tex].
Therefore, the value of [tex]\(n\)[/tex] that makes the equation [tex]\(\frac{3n + 3}{5} = \frac{5n - 1}{9}\)[/tex] true is:
A. [tex]\(n = -16\)[/tex]
1. First, clear the fractions by finding a common denominator.
- The common denominator for 5 and 9 is 45.
- Multiply both sides of the equation by 45 to eliminate the denominators.
[tex]\[ \begin{aligned} 45 \cdot \frac{3n + 3}{5} & = 45 \cdot \frac{5n - 1}{9} \\ 45 \cdot \frac{3n + 3}{5} & = 45 \cdot \frac{5n - 1}{9} \end{aligned} \][/tex]
2. Distribute the 45 to both terms inside each fraction:
[tex]\[ \begin{aligned} 45 \cdot \frac{3n + 3}{5} & = 45 \cdot \frac{5n - 1}{9} \\ \left(\frac{45}{5}\right) \cdot (3n + 3) & = \left(\frac{45}{9}\right) \cdot (5n - 1) \end{aligned} \][/tex]
3. Simplify the coefficients:
[tex]\[ \begin{aligned} 9(3n + 3) & = 5(5n - 1) \\ 27n + 27 & = 25n - 5 \end{aligned} \][/tex]
4. Move all terms involving [tex]\(n\)[/tex] to one side of the equation and constants to the other:
[tex]\[ \begin{aligned} 27n + 27 &= 25n - 5 \\ 27n - 25n &= -5 - 27 \\ 2n &= -32 \end{aligned} \][/tex]
5. Solve for [tex]\(n\)[/tex]:
[tex]\[ \begin{aligned} 2n &= -32 \\ n &= \frac{-32}{2} \\ n &= -16 \end{aligned} \][/tex]
6. Check the potential solutions among the given choices: [tex]\(n = -16\)[/tex], [tex]\(n = -2\)[/tex], [tex]\(n = 2\)[/tex], and [tex]\(n = 16\)[/tex]
- The correct answer is [tex]\(n = -16\)[/tex].
Therefore, the value of [tex]\(n\)[/tex] that makes the equation [tex]\(\frac{3n + 3}{5} = \frac{5n - 1}{9}\)[/tex] true is:
A. [tex]\(n = -16\)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.