Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the expression [tex]\( f(x) = \sqrt{x^2 - 3x - 10} \)[/tex], we need to simplify and understand each part of the function. Here's a detailed step-by-step solution:
1. Define the expression inside the square root:
[tex]\( x^2 - 3x - 10 \)[/tex]
2. Simplify the quadratic expression:
The given quadratic expression is already simplified as [tex]\( x^2 - 3x - 10 \)[/tex].
3. Understand the components inside the square root:
[tex]\( x^2 - 3x - 10 \)[/tex] is a quadratic polynomial. The term under the square root determines the domain of the function because the value inside the square root must be non-negative.
4. Determine the domain of [tex]\( f(x) \)[/tex]:
To ensure that the expression under the square root is non-negative (since the square root of a negative number is not a real number), we solve the inequality:
[tex]\( x^2 - 3x - 10 \geq 0 \)[/tex]
5. Find the roots of the quadratic equation:
Solve for [tex]\( x \)[/tex] in the equation [tex]\( x^2 - 3x - 10 = 0 \)[/tex].
To factorize [tex]\( x^2 - 3x - 10 \)[/tex]:
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) = 0 \][/tex]
Therefore, the roots are:
[tex]\[ x = 5 \quad \text{and} \quad x = -2 \][/tex]
6. Determine the intervals:
To find where [tex]\( x^2 - 3x - 10 \)[/tex] is non-negative, consider the intervals determined by the roots:
- [tex]\( (-\infty, -2) \)[/tex]
- [tex]\( (-2, 5) \)[/tex]
- [tex]\( (5, \infty) \)[/tex]
Substitute test points from each interval back into the inequality to determine where the expression is non-negative:
- For [tex]\( x < -2 \)[/tex]: Choose [tex]\( x = -3 \)[/tex]
[tex]\[ (-3)^2 - 3(-3) - 10 = 9 + 9 - 10 = 8 \quad (positive) \][/tex]
- For [tex]\( -2 < x < 5 \)[/tex]: Choose [tex]\( x = 0 \)[/tex]
[tex]\[ 0^2 - 3(0) - 10 = -10 \quad (negative) \][/tex]
- For [tex]\( x > 5 \)[/tex]: Choose [tex]\( x = 6 \)[/tex]
[tex]\[ 6^2 - 3(6) - 10 = 36 - 18 - 10 = 8 \quad (positive) \][/tex]
Therefore, the expression [tex]\( x^2 - 3x - 10 \geq 0 \)[/tex] is true for:
[tex]\[ x \in (-\infty, -2] \cup [5, \infty) \][/tex]
7. Express the function [tex]\( f(x) \)[/tex] in the domain identified:
Given the domain calculated, [tex]\( f(x) = \sqrt{x^2 - 3x - 10} \)[/tex] is defined for:
[tex]\[ x \in (-\infty, -2] \cup [5, \infty) \][/tex]
8. Conclusion:
The function [tex]\( f(x) = \sqrt{x^2 - 3x - 10} \)[/tex] simplifies to itself, and we have determined the domain as [tex]\( x \in (-\infty, -2] \cup [5, \infty) \)[/tex]. Thus, the function [tex]\( f(x) \)[/tex] can be interpreted as:
[tex]\[ \boxed{\sqrt{x^2 - 3x - 10}} \][/tex]
We have also specified that this function is valid within the domain [tex]\( (-\infty, -2] \cup [5, \infty) \)[/tex].
1. Define the expression inside the square root:
[tex]\( x^2 - 3x - 10 \)[/tex]
2. Simplify the quadratic expression:
The given quadratic expression is already simplified as [tex]\( x^2 - 3x - 10 \)[/tex].
3. Understand the components inside the square root:
[tex]\( x^2 - 3x - 10 \)[/tex] is a quadratic polynomial. The term under the square root determines the domain of the function because the value inside the square root must be non-negative.
4. Determine the domain of [tex]\( f(x) \)[/tex]:
To ensure that the expression under the square root is non-negative (since the square root of a negative number is not a real number), we solve the inequality:
[tex]\( x^2 - 3x - 10 \geq 0 \)[/tex]
5. Find the roots of the quadratic equation:
Solve for [tex]\( x \)[/tex] in the equation [tex]\( x^2 - 3x - 10 = 0 \)[/tex].
To factorize [tex]\( x^2 - 3x - 10 \)[/tex]:
[tex]\[ x^2 - 3x - 10 = (x - 5)(x + 2) = 0 \][/tex]
Therefore, the roots are:
[tex]\[ x = 5 \quad \text{and} \quad x = -2 \][/tex]
6. Determine the intervals:
To find where [tex]\( x^2 - 3x - 10 \)[/tex] is non-negative, consider the intervals determined by the roots:
- [tex]\( (-\infty, -2) \)[/tex]
- [tex]\( (-2, 5) \)[/tex]
- [tex]\( (5, \infty) \)[/tex]
Substitute test points from each interval back into the inequality to determine where the expression is non-negative:
- For [tex]\( x < -2 \)[/tex]: Choose [tex]\( x = -3 \)[/tex]
[tex]\[ (-3)^2 - 3(-3) - 10 = 9 + 9 - 10 = 8 \quad (positive) \][/tex]
- For [tex]\( -2 < x < 5 \)[/tex]: Choose [tex]\( x = 0 \)[/tex]
[tex]\[ 0^2 - 3(0) - 10 = -10 \quad (negative) \][/tex]
- For [tex]\( x > 5 \)[/tex]: Choose [tex]\( x = 6 \)[/tex]
[tex]\[ 6^2 - 3(6) - 10 = 36 - 18 - 10 = 8 \quad (positive) \][/tex]
Therefore, the expression [tex]\( x^2 - 3x - 10 \geq 0 \)[/tex] is true for:
[tex]\[ x \in (-\infty, -2] \cup [5, \infty) \][/tex]
7. Express the function [tex]\( f(x) \)[/tex] in the domain identified:
Given the domain calculated, [tex]\( f(x) = \sqrt{x^2 - 3x - 10} \)[/tex] is defined for:
[tex]\[ x \in (-\infty, -2] \cup [5, \infty) \][/tex]
8. Conclusion:
The function [tex]\( f(x) = \sqrt{x^2 - 3x - 10} \)[/tex] simplifies to itself, and we have determined the domain as [tex]\( x \in (-\infty, -2] \cup [5, \infty) \)[/tex]. Thus, the function [tex]\( f(x) \)[/tex] can be interpreted as:
[tex]\[ \boxed{\sqrt{x^2 - 3x - 10}} \][/tex]
We have also specified that this function is valid within the domain [tex]\( (-\infty, -2] \cup [5, \infty) \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.