Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! Let's go through the steps needed to plot the ordered pairs for the given linear function, [tex]\( y = \frac{1}{2} x + 1 \)[/tex], with the domain [tex]\( D: \{-8, -4, 0, 2, 6\} \)[/tex].
Step-by-Step Solution:
1. Identify the formula: The given linear function is [tex]\( y = \frac{1}{2} x + 1 \)[/tex].
2. Apply the domain values to the function:
- For [tex]\( x = -8 \)[/tex]:
[tex]\( y = \frac{1}{2}(-8) + 1 = -4 + 1 = -3 \)[/tex]
Hence, the ordered pair is [tex]\((-8, -3)\)[/tex].
- For [tex]\( x = -4 \)[/tex]:
[tex]\( y = \frac{1}{2}(-4) + 1 = -2 + 1 = -1 \)[/tex]
Hence, the ordered pair is [tex]\((-4, -1)\)[/tex].
- For [tex]\( x = 0 \)[/tex]:
[tex]\( y = \frac{1}{2}(0) + 1 = 0 + 1 = 1 \)[/tex]
Hence, the ordered pair is [tex]\((0, 1)\)[/tex].
- For [tex]\( x = 2 \)[/tex]:
[tex]\( y = \frac{1}{2}(2) + 1 = 1 + 1 = 2 \)[/tex]
Hence, the ordered pair is [tex]\((2, 2)\)[/tex].
- For [tex]\( x = 6 \)[/tex]:
[tex]\( y = \frac{1}{2}(6) + 1 = 3 + 1 = 4 \)[/tex]
Hence, the ordered pair is [tex]\((6, 4)\)[/tex].
3. List all ordered pairs: The list of ordered pairs is:
[tex]\[ (-8, -3), (-4, -1), (0, 1), (2, 2), (6, 4) \][/tex]
4. Plot these ordered pairs on a graph:
- To plot these points correctly, you need graphing tools or graph paper.
- Mark each point on the graph according to its coordinates:
- Point at [tex]\((-8, -3)\)[/tex]
- Point at [tex]\((-4, -1)\)[/tex]
- Point at [tex]\((0, 1)\)[/tex]
- Point at [tex]\((2, 2)\)[/tex]
- Point at [tex]\((6, 4)\)[/tex]
Once you mark these points on the graph, you will see that they all lie on the straight line defined by the function [tex]\( y = \frac{1}{2} x + 1 \)[/tex].
That's the detailed solution you need to follow in order to plot the given linear function with the specified domain values.
Step-by-Step Solution:
1. Identify the formula: The given linear function is [tex]\( y = \frac{1}{2} x + 1 \)[/tex].
2. Apply the domain values to the function:
- For [tex]\( x = -8 \)[/tex]:
[tex]\( y = \frac{1}{2}(-8) + 1 = -4 + 1 = -3 \)[/tex]
Hence, the ordered pair is [tex]\((-8, -3)\)[/tex].
- For [tex]\( x = -4 \)[/tex]:
[tex]\( y = \frac{1}{2}(-4) + 1 = -2 + 1 = -1 \)[/tex]
Hence, the ordered pair is [tex]\((-4, -1)\)[/tex].
- For [tex]\( x = 0 \)[/tex]:
[tex]\( y = \frac{1}{2}(0) + 1 = 0 + 1 = 1 \)[/tex]
Hence, the ordered pair is [tex]\((0, 1)\)[/tex].
- For [tex]\( x = 2 \)[/tex]:
[tex]\( y = \frac{1}{2}(2) + 1 = 1 + 1 = 2 \)[/tex]
Hence, the ordered pair is [tex]\((2, 2)\)[/tex].
- For [tex]\( x = 6 \)[/tex]:
[tex]\( y = \frac{1}{2}(6) + 1 = 3 + 1 = 4 \)[/tex]
Hence, the ordered pair is [tex]\((6, 4)\)[/tex].
3. List all ordered pairs: The list of ordered pairs is:
[tex]\[ (-8, -3), (-4, -1), (0, 1), (2, 2), (6, 4) \][/tex]
4. Plot these ordered pairs on a graph:
- To plot these points correctly, you need graphing tools or graph paper.
- Mark each point on the graph according to its coordinates:
- Point at [tex]\((-8, -3)\)[/tex]
- Point at [tex]\((-4, -1)\)[/tex]
- Point at [tex]\((0, 1)\)[/tex]
- Point at [tex]\((2, 2)\)[/tex]
- Point at [tex]\((6, 4)\)[/tex]
Once you mark these points on the graph, you will see that they all lie on the straight line defined by the function [tex]\( y = \frac{1}{2} x + 1 \)[/tex].
That's the detailed solution you need to follow in order to plot the given linear function with the specified domain values.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.