Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's go through the steps needed to plot the ordered pairs for the given linear function, [tex]\( y = \frac{1}{2} x + 1 \)[/tex], with the domain [tex]\( D: \{-8, -4, 0, 2, 6\} \)[/tex].
Step-by-Step Solution:
1. Identify the formula: The given linear function is [tex]\( y = \frac{1}{2} x + 1 \)[/tex].
2. Apply the domain values to the function:
- For [tex]\( x = -8 \)[/tex]:
[tex]\( y = \frac{1}{2}(-8) + 1 = -4 + 1 = -3 \)[/tex]
Hence, the ordered pair is [tex]\((-8, -3)\)[/tex].
- For [tex]\( x = -4 \)[/tex]:
[tex]\( y = \frac{1}{2}(-4) + 1 = -2 + 1 = -1 \)[/tex]
Hence, the ordered pair is [tex]\((-4, -1)\)[/tex].
- For [tex]\( x = 0 \)[/tex]:
[tex]\( y = \frac{1}{2}(0) + 1 = 0 + 1 = 1 \)[/tex]
Hence, the ordered pair is [tex]\((0, 1)\)[/tex].
- For [tex]\( x = 2 \)[/tex]:
[tex]\( y = \frac{1}{2}(2) + 1 = 1 + 1 = 2 \)[/tex]
Hence, the ordered pair is [tex]\((2, 2)\)[/tex].
- For [tex]\( x = 6 \)[/tex]:
[tex]\( y = \frac{1}{2}(6) + 1 = 3 + 1 = 4 \)[/tex]
Hence, the ordered pair is [tex]\((6, 4)\)[/tex].
3. List all ordered pairs: The list of ordered pairs is:
[tex]\[ (-8, -3), (-4, -1), (0, 1), (2, 2), (6, 4) \][/tex]
4. Plot these ordered pairs on a graph:
- To plot these points correctly, you need graphing tools or graph paper.
- Mark each point on the graph according to its coordinates:
- Point at [tex]\((-8, -3)\)[/tex]
- Point at [tex]\((-4, -1)\)[/tex]
- Point at [tex]\((0, 1)\)[/tex]
- Point at [tex]\((2, 2)\)[/tex]
- Point at [tex]\((6, 4)\)[/tex]
Once you mark these points on the graph, you will see that they all lie on the straight line defined by the function [tex]\( y = \frac{1}{2} x + 1 \)[/tex].
That's the detailed solution you need to follow in order to plot the given linear function with the specified domain values.
Step-by-Step Solution:
1. Identify the formula: The given linear function is [tex]\( y = \frac{1}{2} x + 1 \)[/tex].
2. Apply the domain values to the function:
- For [tex]\( x = -8 \)[/tex]:
[tex]\( y = \frac{1}{2}(-8) + 1 = -4 + 1 = -3 \)[/tex]
Hence, the ordered pair is [tex]\((-8, -3)\)[/tex].
- For [tex]\( x = -4 \)[/tex]:
[tex]\( y = \frac{1}{2}(-4) + 1 = -2 + 1 = -1 \)[/tex]
Hence, the ordered pair is [tex]\((-4, -1)\)[/tex].
- For [tex]\( x = 0 \)[/tex]:
[tex]\( y = \frac{1}{2}(0) + 1 = 0 + 1 = 1 \)[/tex]
Hence, the ordered pair is [tex]\((0, 1)\)[/tex].
- For [tex]\( x = 2 \)[/tex]:
[tex]\( y = \frac{1}{2}(2) + 1 = 1 + 1 = 2 \)[/tex]
Hence, the ordered pair is [tex]\((2, 2)\)[/tex].
- For [tex]\( x = 6 \)[/tex]:
[tex]\( y = \frac{1}{2}(6) + 1 = 3 + 1 = 4 \)[/tex]
Hence, the ordered pair is [tex]\((6, 4)\)[/tex].
3. List all ordered pairs: The list of ordered pairs is:
[tex]\[ (-8, -3), (-4, -1), (0, 1), (2, 2), (6, 4) \][/tex]
4. Plot these ordered pairs on a graph:
- To plot these points correctly, you need graphing tools or graph paper.
- Mark each point on the graph according to its coordinates:
- Point at [tex]\((-8, -3)\)[/tex]
- Point at [tex]\((-4, -1)\)[/tex]
- Point at [tex]\((0, 1)\)[/tex]
- Point at [tex]\((2, 2)\)[/tex]
- Point at [tex]\((6, 4)\)[/tex]
Once you mark these points on the graph, you will see that they all lie on the straight line defined by the function [tex]\( y = \frac{1}{2} x + 1 \)[/tex].
That's the detailed solution you need to follow in order to plot the given linear function with the specified domain values.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.