Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the inequality and determine which graph represents [tex]\( y \leq \frac{2}{2} x - 1 \)[/tex], let's break down the process step by step.
### Step 1: Simplify the Inequality
The given inequality is:
[tex]\[ y \leq \frac{2}{2} x - 1 \][/tex]
First, simplify the coefficient of [tex]\( x \)[/tex]:
[tex]\[ \frac{2}{2} = 1 \][/tex]
So, the inequality simplifies to:
[tex]\[ y \leq x - 1 \][/tex]
### Step 2: Identify the Boundary Line
The boundary line for the inequality [tex]\( y \leq x - 1 \)[/tex] is:
[tex]\[ y = x - 1 \][/tex]
### Step 3: Plot the Boundary Line
To draw the line [tex]\( y = x - 1 \)[/tex], identify two points on the line:
1. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0 - 1 = -1 \][/tex]
Point: [tex]\( (0, -1) \)[/tex]
2. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 1 - 1 = 0 \][/tex]
Point: [tex]\( (1, 0) \)[/tex]
Plot these points and draw a straight line through them.
### Step 4: Determine the Shaded Region
Since the inequality is [tex]\( y \leq x - 1 \)[/tex], the region that satisfies this inequality is below or on the line [tex]\( y = x - 1 \)[/tex].
### Summary
The graph you should be looking for is one that has:
- A line passing through [tex]\((0, -1)\)[/tex] and [tex]\((1, 0)\)[/tex].
- The region below and including this line shaded.
Thus, the correct graph is the one where the region below the line [tex]\( y = x - 1 \)[/tex] is shaded, indicating that all the points [tex]\( (x, y) \)[/tex] on and below this line satisfy the inequality [tex]\( y \leq x - 1 \)[/tex].
Since the solution is 1, the correct graph is the first one among the options provided.
### Step 1: Simplify the Inequality
The given inequality is:
[tex]\[ y \leq \frac{2}{2} x - 1 \][/tex]
First, simplify the coefficient of [tex]\( x \)[/tex]:
[tex]\[ \frac{2}{2} = 1 \][/tex]
So, the inequality simplifies to:
[tex]\[ y \leq x - 1 \][/tex]
### Step 2: Identify the Boundary Line
The boundary line for the inequality [tex]\( y \leq x - 1 \)[/tex] is:
[tex]\[ y = x - 1 \][/tex]
### Step 3: Plot the Boundary Line
To draw the line [tex]\( y = x - 1 \)[/tex], identify two points on the line:
1. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0 - 1 = -1 \][/tex]
Point: [tex]\( (0, -1) \)[/tex]
2. For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 1 - 1 = 0 \][/tex]
Point: [tex]\( (1, 0) \)[/tex]
Plot these points and draw a straight line through them.
### Step 4: Determine the Shaded Region
Since the inequality is [tex]\( y \leq x - 1 \)[/tex], the region that satisfies this inequality is below or on the line [tex]\( y = x - 1 \)[/tex].
### Summary
The graph you should be looking for is one that has:
- A line passing through [tex]\((0, -1)\)[/tex] and [tex]\((1, 0)\)[/tex].
- The region below and including this line shaded.
Thus, the correct graph is the one where the region below the line [tex]\( y = x - 1 \)[/tex] is shaded, indicating that all the points [tex]\( (x, y) \)[/tex] on and below this line satisfy the inequality [tex]\( y \leq x - 1 \)[/tex].
Since the solution is 1, the correct graph is the first one among the options provided.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.