Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, we need to use the transformation rule involving reflection across the y-axis. The rule is given as:
[tex]\[ r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \][/tex]
This transformation means that any point [tex]\((x, y)\)[/tex] will be reflected across the y-axis to become [tex]\((-x, y)\)[/tex]. Our goal is to find which of the given points is the pre-image of the vertex [tex]\( A' \)[/tex].
Given:
[tex]\[ A' = (4, 2) \][/tex]
We need to check each of the given points to see which one, when the transformation rule is applied, results in the coordinates [tex]\((4, 2)\)[/tex].
Let's examine each point one by one:
1. For [tex]\( A = (-4, 2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-4, 2) \rightarrow (-(-4), 2) = (4, 2) \][/tex]
This matches [tex]\( A' \)[/tex].
2. For [tex]\( A = (-2, -4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-2, -4) \rightarrow (-(-2), -4) = (2, -4) \][/tex]
This does not match [tex]\( A' \)[/tex].
3. For [tex]\( A = (2, 4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(2, 4) \rightarrow (-(2), 4) = (-2, 4) \][/tex]
This does not match [tex]\( A' \)[/tex].
4. For [tex]\( A = (4, -2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(4, -2) \rightarrow (-(4), -2) = (-4, -2) \][/tex]
This does not match [tex]\( A' \)[/tex].
Only the point [tex]\( (-4, 2) \)[/tex], when transformed, produces the vertex [tex]\( A' \)[/tex] with coordinates [tex]\( (4, 2) \)[/tex].
Therefore, the pre-image of vertex [tex]\( A' \)[/tex] is:
[tex]\[ A(-4, 2) \][/tex]
[tex]\[ r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \][/tex]
This transformation means that any point [tex]\((x, y)\)[/tex] will be reflected across the y-axis to become [tex]\((-x, y)\)[/tex]. Our goal is to find which of the given points is the pre-image of the vertex [tex]\( A' \)[/tex].
Given:
[tex]\[ A' = (4, 2) \][/tex]
We need to check each of the given points to see which one, when the transformation rule is applied, results in the coordinates [tex]\((4, 2)\)[/tex].
Let's examine each point one by one:
1. For [tex]\( A = (-4, 2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-4, 2) \rightarrow (-(-4), 2) = (4, 2) \][/tex]
This matches [tex]\( A' \)[/tex].
2. For [tex]\( A = (-2, -4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-2, -4) \rightarrow (-(-2), -4) = (2, -4) \][/tex]
This does not match [tex]\( A' \)[/tex].
3. For [tex]\( A = (2, 4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(2, 4) \rightarrow (-(2), 4) = (-2, 4) \][/tex]
This does not match [tex]\( A' \)[/tex].
4. For [tex]\( A = (4, -2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(4, -2) \rightarrow (-(4), -2) = (-4, -2) \][/tex]
This does not match [tex]\( A' \)[/tex].
Only the point [tex]\( (-4, 2) \)[/tex], when transformed, produces the vertex [tex]\( A' \)[/tex] with coordinates [tex]\( (4, 2) \)[/tex].
Therefore, the pre-image of vertex [tex]\( A' \)[/tex] is:
[tex]\[ A(-4, 2) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.