Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to use the transformation rule involving reflection across the y-axis. The rule is given as:
[tex]\[ r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \][/tex]
This transformation means that any point [tex]\((x, y)\)[/tex] will be reflected across the y-axis to become [tex]\((-x, y)\)[/tex]. Our goal is to find which of the given points is the pre-image of the vertex [tex]\( A' \)[/tex].
Given:
[tex]\[ A' = (4, 2) \][/tex]
We need to check each of the given points to see which one, when the transformation rule is applied, results in the coordinates [tex]\((4, 2)\)[/tex].
Let's examine each point one by one:
1. For [tex]\( A = (-4, 2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-4, 2) \rightarrow (-(-4), 2) = (4, 2) \][/tex]
This matches [tex]\( A' \)[/tex].
2. For [tex]\( A = (-2, -4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-2, -4) \rightarrow (-(-2), -4) = (2, -4) \][/tex]
This does not match [tex]\( A' \)[/tex].
3. For [tex]\( A = (2, 4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(2, 4) \rightarrow (-(2), 4) = (-2, 4) \][/tex]
This does not match [tex]\( A' \)[/tex].
4. For [tex]\( A = (4, -2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(4, -2) \rightarrow (-(4), -2) = (-4, -2) \][/tex]
This does not match [tex]\( A' \)[/tex].
Only the point [tex]\( (-4, 2) \)[/tex], when transformed, produces the vertex [tex]\( A' \)[/tex] with coordinates [tex]\( (4, 2) \)[/tex].
Therefore, the pre-image of vertex [tex]\( A' \)[/tex] is:
[tex]\[ A(-4, 2) \][/tex]
[tex]\[ r_{y \text{-axis}}(x, y) \rightarrow (-x, y) \][/tex]
This transformation means that any point [tex]\((x, y)\)[/tex] will be reflected across the y-axis to become [tex]\((-x, y)\)[/tex]. Our goal is to find which of the given points is the pre-image of the vertex [tex]\( A' \)[/tex].
Given:
[tex]\[ A' = (4, 2) \][/tex]
We need to check each of the given points to see which one, when the transformation rule is applied, results in the coordinates [tex]\((4, 2)\)[/tex].
Let's examine each point one by one:
1. For [tex]\( A = (-4, 2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-4, 2) \rightarrow (-(-4), 2) = (4, 2) \][/tex]
This matches [tex]\( A' \)[/tex].
2. For [tex]\( A = (-2, -4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(-2, -4) \rightarrow (-(-2), -4) = (2, -4) \][/tex]
This does not match [tex]\( A' \)[/tex].
3. For [tex]\( A = (2, 4) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(2, 4) \rightarrow (-(2), 4) = (-2, 4) \][/tex]
This does not match [tex]\( A' \)[/tex].
4. For [tex]\( A = (4, -2) \)[/tex]:
[tex]\[ r_{y \text{-axis}}(4, -2) \rightarrow (-(4), -2) = (-4, -2) \][/tex]
This does not match [tex]\( A' \)[/tex].
Only the point [tex]\( (-4, 2) \)[/tex], when transformed, produces the vertex [tex]\( A' \)[/tex] with coordinates [tex]\( (4, 2) \)[/tex].
Therefore, the pre-image of vertex [tex]\( A' \)[/tex] is:
[tex]\[ A(-4, 2) \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.