Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the value of [tex]\(\cos 45^{\circ}\)[/tex], we need to recall a basic fact from trigonometry:
1. The cosine of an angle in a right-angled triangle is defined as the ratio of the length of the adjacent side to the hypotenuse.
2. For a 45-degree angle in such a triangle, the two non-hypotenuse sides are equal because it is an isosceles right triangle (also known as a 45-45-90 triangle).
Given the properties of the 45-45-90 triangle:
- The lengths of the legs are equal.
- The length of the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg.
To be more specific, if the legs are each of length [tex]\(1\)[/tex]:
- The hypotenuse [tex]\( h \)[/tex] will have a length of [tex]\( h = \sqrt{1^2 + 1^2} = \sqrt{2} \)[/tex].
Therefore, we find:
[tex]\[ \cos 45^{\circ} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}}. \][/tex]
Note: The value [tex]\(\frac{1}{\sqrt{2}}\)[/tex] can also be written in its rationalized form, which would be:
[tex]\[ \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
However, looking at the answer choices provided:
- D. [tex]\( \frac{1}{\sqrt{2}} \)[/tex]
Thus, the value of [tex]\(\cos 45^{\circ}\)[/tex] is:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
After verifying the provided answer, it matches our obtained value:
[tex]\[ \cos 45^{\circ} = 0.7071067811865476. \][/tex]
So, the correct choice from the options is indeed:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
1. The cosine of an angle in a right-angled triangle is defined as the ratio of the length of the adjacent side to the hypotenuse.
2. For a 45-degree angle in such a triangle, the two non-hypotenuse sides are equal because it is an isosceles right triangle (also known as a 45-45-90 triangle).
Given the properties of the 45-45-90 triangle:
- The lengths of the legs are equal.
- The length of the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg.
To be more specific, if the legs are each of length [tex]\(1\)[/tex]:
- The hypotenuse [tex]\( h \)[/tex] will have a length of [tex]\( h = \sqrt{1^2 + 1^2} = \sqrt{2} \)[/tex].
Therefore, we find:
[tex]\[ \cos 45^{\circ} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}}. \][/tex]
Note: The value [tex]\(\frac{1}{\sqrt{2}}\)[/tex] can also be written in its rationalized form, which would be:
[tex]\[ \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
However, looking at the answer choices provided:
- D. [tex]\( \frac{1}{\sqrt{2}} \)[/tex]
Thus, the value of [tex]\(\cos 45^{\circ}\)[/tex] is:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
After verifying the provided answer, it matches our obtained value:
[tex]\[ \cos 45^{\circ} = 0.7071067811865476. \][/tex]
So, the correct choice from the options is indeed:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.