Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the value of [tex]\(\cos 45^{\circ}\)[/tex], we need to recall a basic fact from trigonometry:
1. The cosine of an angle in a right-angled triangle is defined as the ratio of the length of the adjacent side to the hypotenuse.
2. For a 45-degree angle in such a triangle, the two non-hypotenuse sides are equal because it is an isosceles right triangle (also known as a 45-45-90 triangle).
Given the properties of the 45-45-90 triangle:
- The lengths of the legs are equal.
- The length of the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg.
To be more specific, if the legs are each of length [tex]\(1\)[/tex]:
- The hypotenuse [tex]\( h \)[/tex] will have a length of [tex]\( h = \sqrt{1^2 + 1^2} = \sqrt{2} \)[/tex].
Therefore, we find:
[tex]\[ \cos 45^{\circ} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}}. \][/tex]
Note: The value [tex]\(\frac{1}{\sqrt{2}}\)[/tex] can also be written in its rationalized form, which would be:
[tex]\[ \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
However, looking at the answer choices provided:
- D. [tex]\( \frac{1}{\sqrt{2}} \)[/tex]
Thus, the value of [tex]\(\cos 45^{\circ}\)[/tex] is:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
After verifying the provided answer, it matches our obtained value:
[tex]\[ \cos 45^{\circ} = 0.7071067811865476. \][/tex]
So, the correct choice from the options is indeed:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
1. The cosine of an angle in a right-angled triangle is defined as the ratio of the length of the adjacent side to the hypotenuse.
2. For a 45-degree angle in such a triangle, the two non-hypotenuse sides are equal because it is an isosceles right triangle (also known as a 45-45-90 triangle).
Given the properties of the 45-45-90 triangle:
- The lengths of the legs are equal.
- The length of the hypotenuse is [tex]\( \sqrt{2} \)[/tex] times the length of each leg.
To be more specific, if the legs are each of length [tex]\(1\)[/tex]:
- The hypotenuse [tex]\( h \)[/tex] will have a length of [tex]\( h = \sqrt{1^2 + 1^2} = \sqrt{2} \)[/tex].
Therefore, we find:
[tex]\[ \cos 45^{\circ} = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}}. \][/tex]
Note: The value [tex]\(\frac{1}{\sqrt{2}}\)[/tex] can also be written in its rationalized form, which would be:
[tex]\[ \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
However, looking at the answer choices provided:
- D. [tex]\( \frac{1}{\sqrt{2}} \)[/tex]
Thus, the value of [tex]\(\cos 45^{\circ}\)[/tex] is:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
After verifying the provided answer, it matches our obtained value:
[tex]\[ \cos 45^{\circ} = 0.7071067811865476. \][/tex]
So, the correct choice from the options is indeed:
D. [tex]\(\frac{1}{\sqrt{2}}\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.