Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find an equivalent equation for [tex]\(\log_x(r) = -n\)[/tex], let's proceed step-by-step using the properties of logarithms and exponents.
1. Rewrite the logarithmic equation using the definition of a logarithm:
[tex]\[\log_x(r) = -n\][/tex]
The logarithm [tex]\(\log_x(r) = -n\)[/tex] can be interpreted as: "x raised to the power of [tex]\(-n\)[/tex] equals [tex]\(r\)[/tex]." In mathematical terms, this can be written as:
[tex]\[x^{-n} = r\][/tex]
2. Express the exponent as a reciprocal:
Recall that a negative exponent signifies a reciprocal. So, [tex]\(x^{-n}\)[/tex] can be rewritten as:
[tex]\[x^{-n} = \frac{1}{x^n}\][/tex]
3. Substitute back into the equation:
Now, substitute [tex]\(\frac{1}{x^n}\)[/tex] in place of [tex]\(x^{-n}\)[/tex]:
[tex]\[\frac{1}{x^n} = r\][/tex]
Thus, the equation equivalent to [tex]\(\log_x(r) = -n\)[/tex] is:
[tex]\[\boxed{r = \frac{1}{x^n}}\][/tex]
1. Rewrite the logarithmic equation using the definition of a logarithm:
[tex]\[\log_x(r) = -n\][/tex]
The logarithm [tex]\(\log_x(r) = -n\)[/tex] can be interpreted as: "x raised to the power of [tex]\(-n\)[/tex] equals [tex]\(r\)[/tex]." In mathematical terms, this can be written as:
[tex]\[x^{-n} = r\][/tex]
2. Express the exponent as a reciprocal:
Recall that a negative exponent signifies a reciprocal. So, [tex]\(x^{-n}\)[/tex] can be rewritten as:
[tex]\[x^{-n} = \frac{1}{x^n}\][/tex]
3. Substitute back into the equation:
Now, substitute [tex]\(\frac{1}{x^n}\)[/tex] in place of [tex]\(x^{-n}\)[/tex]:
[tex]\[\frac{1}{x^n} = r\][/tex]
Thus, the equation equivalent to [tex]\(\log_x(r) = -n\)[/tex] is:
[tex]\[\boxed{r = \frac{1}{x^n}}\][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.