Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's determine the number of dolls sold for which the company's income equals its costs. We need to find where the two equations intersect.
The equations are:
Income: [tex]\( y = -0.4x^2 + 3x + 45 \)[/tex]
Costs: [tex]\( y = 1.5x + 20 \)[/tex]
To find the break-even point(s), we set the income equal to the costs:
[tex]\[ -0.4x^2 + 3x + 45 = 1.5x + 20 \][/tex]
First, rearrange this equation to form a standard quadratic equation:
[tex]\[ -0.4x^2 + 3x - 1.5x + 45 - 20 = 0 \][/tex]
[tex]\[ -0.4x^2 + 1.5x + 25 = 0 \][/tex]
In the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\( a = -0.4 \)[/tex]
[tex]\( b = 1.5 \)[/tex]
[tex]\( c = 25 \)[/tex]
Next, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{Discriminant} = (1.5)^2 - 4(-0.4)(25) \][/tex]
A quadratic equation can have:
- Two solutions if the discriminant is greater than 0
- One solution if the discriminant equals 0
- No real solutions if the discriminant is less than 0
In this case:
[tex]\[ \text{Discriminant} = 2.25 + 40 = 42.25 \][/tex]
Since the discriminant [tex]\( 42.25 \)[/tex] is greater than 0, there are 2 potential solutions for [tex]\( x \)[/tex].
However, we need to determine which of these solutions are viable. In real-world scenarios like this, [tex]\( x \)[/tex] must be non-negative because it represents the number of dolls sold.
By calculating the roots of the quadratic equation:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-1.5 \pm \sqrt{42.25}}{-0.8} \][/tex]
[tex]\[ x_1 = \frac{5.75}{-0.8} \implies x_1 < 0 \][/tex] (Not viable)
[tex]\[ x_2 = \frac{-8.75}{-0.8} \implies x_2 > 0 \][/tex] (Viable)
Here, [tex]\( x_1 \)[/tex] is a negative number which is not meaningful in this context, but [tex]\( x_2 \)[/tex] is positive. Therefore, we have 1 viable solution.
Hence,
- There are 2 total possible solutions.
- There is 1 viable solution.
So the correct answers are:
- How many total possible solutions of the form ( [tex]\( x, y \)[/tex] ) are there for this situation? [tex]\(\boxed{2}\)[/tex]
- Of any possible solutions of the form ( [tex]\( x, y \)[/tex] ), how many are viable for this situation? [tex]\(\boxed{1}\)[/tex]
The equations are:
Income: [tex]\( y = -0.4x^2 + 3x + 45 \)[/tex]
Costs: [tex]\( y = 1.5x + 20 \)[/tex]
To find the break-even point(s), we set the income equal to the costs:
[tex]\[ -0.4x^2 + 3x + 45 = 1.5x + 20 \][/tex]
First, rearrange this equation to form a standard quadratic equation:
[tex]\[ -0.4x^2 + 3x - 1.5x + 45 - 20 = 0 \][/tex]
[tex]\[ -0.4x^2 + 1.5x + 25 = 0 \][/tex]
In the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\( a = -0.4 \)[/tex]
[tex]\( b = 1.5 \)[/tex]
[tex]\( c = 25 \)[/tex]
Next, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{Discriminant} = (1.5)^2 - 4(-0.4)(25) \][/tex]
A quadratic equation can have:
- Two solutions if the discriminant is greater than 0
- One solution if the discriminant equals 0
- No real solutions if the discriminant is less than 0
In this case:
[tex]\[ \text{Discriminant} = 2.25 + 40 = 42.25 \][/tex]
Since the discriminant [tex]\( 42.25 \)[/tex] is greater than 0, there are 2 potential solutions for [tex]\( x \)[/tex].
However, we need to determine which of these solutions are viable. In real-world scenarios like this, [tex]\( x \)[/tex] must be non-negative because it represents the number of dolls sold.
By calculating the roots of the quadratic equation:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-1.5 \pm \sqrt{42.25}}{-0.8} \][/tex]
[tex]\[ x_1 = \frac{5.75}{-0.8} \implies x_1 < 0 \][/tex] (Not viable)
[tex]\[ x_2 = \frac{-8.75}{-0.8} \implies x_2 > 0 \][/tex] (Viable)
Here, [tex]\( x_1 \)[/tex] is a negative number which is not meaningful in this context, but [tex]\( x_2 \)[/tex] is positive. Therefore, we have 1 viable solution.
Hence,
- There are 2 total possible solutions.
- There is 1 viable solution.
So the correct answers are:
- How many total possible solutions of the form ( [tex]\( x, y \)[/tex] ) are there for this situation? [tex]\(\boxed{2}\)[/tex]
- Of any possible solutions of the form ( [tex]\( x, y \)[/tex] ), how many are viable for this situation? [tex]\(\boxed{1}\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.