At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's determine the number of dolls sold for which the company's income equals its costs. We need to find where the two equations intersect.
The equations are:
Income: [tex]\( y = -0.4x^2 + 3x + 45 \)[/tex]
Costs: [tex]\( y = 1.5x + 20 \)[/tex]
To find the break-even point(s), we set the income equal to the costs:
[tex]\[ -0.4x^2 + 3x + 45 = 1.5x + 20 \][/tex]
First, rearrange this equation to form a standard quadratic equation:
[tex]\[ -0.4x^2 + 3x - 1.5x + 45 - 20 = 0 \][/tex]
[tex]\[ -0.4x^2 + 1.5x + 25 = 0 \][/tex]
In the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\( a = -0.4 \)[/tex]
[tex]\( b = 1.5 \)[/tex]
[tex]\( c = 25 \)[/tex]
Next, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{Discriminant} = (1.5)^2 - 4(-0.4)(25) \][/tex]
A quadratic equation can have:
- Two solutions if the discriminant is greater than 0
- One solution if the discriminant equals 0
- No real solutions if the discriminant is less than 0
In this case:
[tex]\[ \text{Discriminant} = 2.25 + 40 = 42.25 \][/tex]
Since the discriminant [tex]\( 42.25 \)[/tex] is greater than 0, there are 2 potential solutions for [tex]\( x \)[/tex].
However, we need to determine which of these solutions are viable. In real-world scenarios like this, [tex]\( x \)[/tex] must be non-negative because it represents the number of dolls sold.
By calculating the roots of the quadratic equation:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-1.5 \pm \sqrt{42.25}}{-0.8} \][/tex]
[tex]\[ x_1 = \frac{5.75}{-0.8} \implies x_1 < 0 \][/tex] (Not viable)
[tex]\[ x_2 = \frac{-8.75}{-0.8} \implies x_2 > 0 \][/tex] (Viable)
Here, [tex]\( x_1 \)[/tex] is a negative number which is not meaningful in this context, but [tex]\( x_2 \)[/tex] is positive. Therefore, we have 1 viable solution.
Hence,
- There are 2 total possible solutions.
- There is 1 viable solution.
So the correct answers are:
- How many total possible solutions of the form ( [tex]\( x, y \)[/tex] ) are there for this situation? [tex]\(\boxed{2}\)[/tex]
- Of any possible solutions of the form ( [tex]\( x, y \)[/tex] ), how many are viable for this situation? [tex]\(\boxed{1}\)[/tex]
The equations are:
Income: [tex]\( y = -0.4x^2 + 3x + 45 \)[/tex]
Costs: [tex]\( y = 1.5x + 20 \)[/tex]
To find the break-even point(s), we set the income equal to the costs:
[tex]\[ -0.4x^2 + 3x + 45 = 1.5x + 20 \][/tex]
First, rearrange this equation to form a standard quadratic equation:
[tex]\[ -0.4x^2 + 3x - 1.5x + 45 - 20 = 0 \][/tex]
[tex]\[ -0.4x^2 + 1.5x + 25 = 0 \][/tex]
In the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\( a = -0.4 \)[/tex]
[tex]\( b = 1.5 \)[/tex]
[tex]\( c = 25 \)[/tex]
Next, calculate the discriminant:
[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]
[tex]\[ \text{Discriminant} = (1.5)^2 - 4(-0.4)(25) \][/tex]
A quadratic equation can have:
- Two solutions if the discriminant is greater than 0
- One solution if the discriminant equals 0
- No real solutions if the discriminant is less than 0
In this case:
[tex]\[ \text{Discriminant} = 2.25 + 40 = 42.25 \][/tex]
Since the discriminant [tex]\( 42.25 \)[/tex] is greater than 0, there are 2 potential solutions for [tex]\( x \)[/tex].
However, we need to determine which of these solutions are viable. In real-world scenarios like this, [tex]\( x \)[/tex] must be non-negative because it represents the number of dolls sold.
By calculating the roots of the quadratic equation:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{-1.5 \pm \sqrt{42.25}}{-0.8} \][/tex]
[tex]\[ x_1 = \frac{5.75}{-0.8} \implies x_1 < 0 \][/tex] (Not viable)
[tex]\[ x_2 = \frac{-8.75}{-0.8} \implies x_2 > 0 \][/tex] (Viable)
Here, [tex]\( x_1 \)[/tex] is a negative number which is not meaningful in this context, but [tex]\( x_2 \)[/tex] is positive. Therefore, we have 1 viable solution.
Hence,
- There are 2 total possible solutions.
- There is 1 viable solution.
So the correct answers are:
- How many total possible solutions of the form ( [tex]\( x, y \)[/tex] ) are there for this situation? [tex]\(\boxed{2}\)[/tex]
- Of any possible solutions of the form ( [tex]\( x, y \)[/tex] ), how many are viable for this situation? [tex]\(\boxed{1}\)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.