Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the end behavior of the polynomial [tex]\( h(x) = -8 x^2 (x+6)^7 (x-9)^4 \)[/tex], we need to analyze how [tex]\( h(x) \)[/tex] behaves as [tex]\( x \)[/tex] approaches positive and negative infinity.
1. Identify the highest degree term:
- The polynomial [tex]\( h(x) \)[/tex] can be broken down into three main parts: [tex]\( x^2 \)[/tex], [tex]\( (x+6)^7 \)[/tex], and [tex]\( (x-9)^4 \)[/tex].
- Each part contributes to the overall degree of the polynomial:
- [tex]\( x^2 \)[/tex] contributes [tex]\( x^2 \)[/tex].
- [tex]\( (x+6)^7 \)[/tex] contributes [tex]\( x^7 \)[/tex]. (For large [tex]\( |x| \)[/tex], the [tex]\( +6 \)[/tex] becomes negligible compared to [tex]\( x \)[/tex]).
- [tex]\( (x-9)^4 \)[/tex] contributes [tex]\( x^4 \)[/tex]. (Again, for large [tex]\( |x| \)[/tex], the [tex]\( -9 \)[/tex] becomes negligible).
2. Combine the highest degree terms:
- Multiplying these together gives the highest degree term:
[tex]\[ h_{\text{leading}}(x) = -8 \cdot x^2 \cdot x^7 \cdot x^4 = -8 x^{2 + 7 + 4} = -8 x^{13} \][/tex]
3. Analyze the leading term for large values of [tex]\( x \)[/tex]:
- The leading term [tex]\( -8 x^{13} \)[/tex] determines the end behavior of the polynomial:
- As [tex]\( x \rightarrow +\infty \)[/tex]:
- Since [tex]\( -8 x^{13} \)[/tex] includes an odd exponent and a negative coefficient, [tex]\( x^{13} \)[/tex] will be very large and positive, and thus [tex]\( -8 x^{13} \)[/tex] will be very large and negative.
- Therefore, [tex]\( h(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty \)[/tex]:
- [tex]\( x^{13} \)[/tex] will be very large and negative because [tex]\( 13 \)[/tex] is an odd power and [tex]\( -8 x^{13} \)[/tex] will be very large and positive.
- Therefore, [tex]\( h(x) \rightarrow +\infty \)[/tex].
In summary:
- As [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], [tex]\( h(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( h(x) \rightarrow +\infty \)[/tex].
To provide specific numerical examples:
- When [tex]\( x = 10 \)[/tex]:
[tex]\[ h(x) \approx -8 \cdot 10^{13} = -80,000,000,000,000 \][/tex]
- When [tex]\( x = -10 \)[/tex]:
[tex]\[ h(x) \approx -8 \cdot (-10)^{13} = 80,000,000,000,000 \][/tex]
Thus, the end behaviors are quantified as:
- [tex]\( h(10) = -80,000,000,000,000 \)[/tex].
- [tex]\( h(-10) = 80,000,000,000,000 \)[/tex].
1. Identify the highest degree term:
- The polynomial [tex]\( h(x) \)[/tex] can be broken down into three main parts: [tex]\( x^2 \)[/tex], [tex]\( (x+6)^7 \)[/tex], and [tex]\( (x-9)^4 \)[/tex].
- Each part contributes to the overall degree of the polynomial:
- [tex]\( x^2 \)[/tex] contributes [tex]\( x^2 \)[/tex].
- [tex]\( (x+6)^7 \)[/tex] contributes [tex]\( x^7 \)[/tex]. (For large [tex]\( |x| \)[/tex], the [tex]\( +6 \)[/tex] becomes negligible compared to [tex]\( x \)[/tex]).
- [tex]\( (x-9)^4 \)[/tex] contributes [tex]\( x^4 \)[/tex]. (Again, for large [tex]\( |x| \)[/tex], the [tex]\( -9 \)[/tex] becomes negligible).
2. Combine the highest degree terms:
- Multiplying these together gives the highest degree term:
[tex]\[ h_{\text{leading}}(x) = -8 \cdot x^2 \cdot x^7 \cdot x^4 = -8 x^{2 + 7 + 4} = -8 x^{13} \][/tex]
3. Analyze the leading term for large values of [tex]\( x \)[/tex]:
- The leading term [tex]\( -8 x^{13} \)[/tex] determines the end behavior of the polynomial:
- As [tex]\( x \rightarrow +\infty \)[/tex]:
- Since [tex]\( -8 x^{13} \)[/tex] includes an odd exponent and a negative coefficient, [tex]\( x^{13} \)[/tex] will be very large and positive, and thus [tex]\( -8 x^{13} \)[/tex] will be very large and negative.
- Therefore, [tex]\( h(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty \)[/tex]:
- [tex]\( x^{13} \)[/tex] will be very large and negative because [tex]\( 13 \)[/tex] is an odd power and [tex]\( -8 x^{13} \)[/tex] will be very large and positive.
- Therefore, [tex]\( h(x) \rightarrow +\infty \)[/tex].
In summary:
- As [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], [tex]\( h(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( h(x) \rightarrow +\infty \)[/tex].
To provide specific numerical examples:
- When [tex]\( x = 10 \)[/tex]:
[tex]\[ h(x) \approx -8 \cdot 10^{13} = -80,000,000,000,000 \][/tex]
- When [tex]\( x = -10 \)[/tex]:
[tex]\[ h(x) \approx -8 \cdot (-10)^{13} = 80,000,000,000,000 \][/tex]
Thus, the end behaviors are quantified as:
- [tex]\( h(10) = -80,000,000,000,000 \)[/tex].
- [tex]\( h(-10) = 80,000,000,000,000 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.