Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the end behavior of the polynomial [tex]\( h(x) = -8 x^2 (x+6)^7 (x-9)^4 \)[/tex], we need to analyze how [tex]\( h(x) \)[/tex] behaves as [tex]\( x \)[/tex] approaches positive and negative infinity.
1. Identify the highest degree term:
- The polynomial [tex]\( h(x) \)[/tex] can be broken down into three main parts: [tex]\( x^2 \)[/tex], [tex]\( (x+6)^7 \)[/tex], and [tex]\( (x-9)^4 \)[/tex].
- Each part contributes to the overall degree of the polynomial:
- [tex]\( x^2 \)[/tex] contributes [tex]\( x^2 \)[/tex].
- [tex]\( (x+6)^7 \)[/tex] contributes [tex]\( x^7 \)[/tex]. (For large [tex]\( |x| \)[/tex], the [tex]\( +6 \)[/tex] becomes negligible compared to [tex]\( x \)[/tex]).
- [tex]\( (x-9)^4 \)[/tex] contributes [tex]\( x^4 \)[/tex]. (Again, for large [tex]\( |x| \)[/tex], the [tex]\( -9 \)[/tex] becomes negligible).
2. Combine the highest degree terms:
- Multiplying these together gives the highest degree term:
[tex]\[ h_{\text{leading}}(x) = -8 \cdot x^2 \cdot x^7 \cdot x^4 = -8 x^{2 + 7 + 4} = -8 x^{13} \][/tex]
3. Analyze the leading term for large values of [tex]\( x \)[/tex]:
- The leading term [tex]\( -8 x^{13} \)[/tex] determines the end behavior of the polynomial:
- As [tex]\( x \rightarrow +\infty \)[/tex]:
- Since [tex]\( -8 x^{13} \)[/tex] includes an odd exponent and a negative coefficient, [tex]\( x^{13} \)[/tex] will be very large and positive, and thus [tex]\( -8 x^{13} \)[/tex] will be very large and negative.
- Therefore, [tex]\( h(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty \)[/tex]:
- [tex]\( x^{13} \)[/tex] will be very large and negative because [tex]\( 13 \)[/tex] is an odd power and [tex]\( -8 x^{13} \)[/tex] will be very large and positive.
- Therefore, [tex]\( h(x) \rightarrow +\infty \)[/tex].
In summary:
- As [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], [tex]\( h(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( h(x) \rightarrow +\infty \)[/tex].
To provide specific numerical examples:
- When [tex]\( x = 10 \)[/tex]:
[tex]\[ h(x) \approx -8 \cdot 10^{13} = -80,000,000,000,000 \][/tex]
- When [tex]\( x = -10 \)[/tex]:
[tex]\[ h(x) \approx -8 \cdot (-10)^{13} = 80,000,000,000,000 \][/tex]
Thus, the end behaviors are quantified as:
- [tex]\( h(10) = -80,000,000,000,000 \)[/tex].
- [tex]\( h(-10) = 80,000,000,000,000 \)[/tex].
1. Identify the highest degree term:
- The polynomial [tex]\( h(x) \)[/tex] can be broken down into three main parts: [tex]\( x^2 \)[/tex], [tex]\( (x+6)^7 \)[/tex], and [tex]\( (x-9)^4 \)[/tex].
- Each part contributes to the overall degree of the polynomial:
- [tex]\( x^2 \)[/tex] contributes [tex]\( x^2 \)[/tex].
- [tex]\( (x+6)^7 \)[/tex] contributes [tex]\( x^7 \)[/tex]. (For large [tex]\( |x| \)[/tex], the [tex]\( +6 \)[/tex] becomes negligible compared to [tex]\( x \)[/tex]).
- [tex]\( (x-9)^4 \)[/tex] contributes [tex]\( x^4 \)[/tex]. (Again, for large [tex]\( |x| \)[/tex], the [tex]\( -9 \)[/tex] becomes negligible).
2. Combine the highest degree terms:
- Multiplying these together gives the highest degree term:
[tex]\[ h_{\text{leading}}(x) = -8 \cdot x^2 \cdot x^7 \cdot x^4 = -8 x^{2 + 7 + 4} = -8 x^{13} \][/tex]
3. Analyze the leading term for large values of [tex]\( x \)[/tex]:
- The leading term [tex]\( -8 x^{13} \)[/tex] determines the end behavior of the polynomial:
- As [tex]\( x \rightarrow +\infty \)[/tex]:
- Since [tex]\( -8 x^{13} \)[/tex] includes an odd exponent and a negative coefficient, [tex]\( x^{13} \)[/tex] will be very large and positive, and thus [tex]\( -8 x^{13} \)[/tex] will be very large and negative.
- Therefore, [tex]\( h(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty \)[/tex]:
- [tex]\( x^{13} \)[/tex] will be very large and negative because [tex]\( 13 \)[/tex] is an odd power and [tex]\( -8 x^{13} \)[/tex] will be very large and positive.
- Therefore, [tex]\( h(x) \rightarrow +\infty \)[/tex].
In summary:
- As [tex]\( x \)[/tex] approaches [tex]\( +\infty \)[/tex], [tex]\( h(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( -\infty \)[/tex], [tex]\( h(x) \rightarrow +\infty \)[/tex].
To provide specific numerical examples:
- When [tex]\( x = 10 \)[/tex]:
[tex]\[ h(x) \approx -8 \cdot 10^{13} = -80,000,000,000,000 \][/tex]
- When [tex]\( x = -10 \)[/tex]:
[tex]\[ h(x) \approx -8 \cdot (-10)^{13} = 80,000,000,000,000 \][/tex]
Thus, the end behaviors are quantified as:
- [tex]\( h(10) = -80,000,000,000,000 \)[/tex].
- [tex]\( h(-10) = 80,000,000,000,000 \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.