At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

\begin{tabular}{|c|c|}
\hline
\multicolumn{2}{|c|}{ Freezing Temperatures [tex]$\left( ^{\circ} \right.$[/tex] ) } \\
\hline
[tex]$F$[/tex] & [tex]$C$[/tex] \\
\hline
-13 & -25 \\
\hline
-4 & -20 \\
\hline
5 & -15 \\
\hline
14 & -10 \\
\hline
23 & -5 \\
\hline
\end{tabular}

The table shows temperatures below freezing measured in different units. Complete the equation in standard form to represent the relationship between [tex]$F$[/tex], a temperature measured in degrees Fahrenheit, and [tex]$C$[/tex], a temperature measured in degrees Celsius.

[tex]$5F + \square = \square$[/tex]

[tex]$39^{\circ} F = \square^{\circ} C$[/tex] rounded to the nearest tenth of a degree.

Sagot :

To represent the relationship between temperatures measured in degrees Fahrenheit ([tex]\(F\)[/tex]) and degrees Celsius ([tex]\(C\)[/tex]) for the given data, we need to derive an equation in the form [tex]\(5F + \square = 9C\)[/tex].

Given the data points:

[tex]\[ \begin{array}{|c|c|} \hline F & C \\ \hline -13 & -25 \\ \hline -4 & -20 \\ \hline 5 & -15 \\ \hline 14 & -10 \\ \hline 23 & -5 \\ \hline \end{array} \][/tex]

We know from the relationship between Fahrenheit and Celsius that they are linearly related. To express this relationship in the form [tex]\(5F + \square = 9C\)[/tex]:

1. We start by calculating the linear regression coefficients, which will give us the slope ([tex]\(m\)[/tex]) and the y-intercept ([tex]\(b\)[/tex]). The slope [tex]\(m\)[/tex] shows us how much [tex]\(C\)[/tex] changes for a unit change in [tex]\(F\)[/tex], and the intercept [tex]\(b\)[/tex] is the value of [tex]\(C\)[/tex] when [tex]\(F\)[/tex] is 0.

2. Using linear regression calculation for the given points, we find that the slope ([tex]\(m\)[/tex]) and the intercept ([tex]\(b\)[/tex]) are determined to be:

[tex]\[ m \approx 0.56 \quad \text{and} \quad b \approx -17.8 \][/tex]

3. Knowing that the relationship can be expressed as:
[tex]\[ C = mF + b \][/tex]

4. We want to rewrite this in the form [tex]\(5F + \square = 9C\)[/tex]. To do this, we need to multiply the entire equation [tex]\(C = 0.56F - 17.8\)[/tex] by 9 to match the coefficient of [tex]\(C\)[/tex] in [tex]\(9C\)[/tex]. This yields:

[tex]\[ 9C = 9(0.56F - 17.8) \][/tex]

5. Simplifying, we get:

[tex]\[ 9C = 5.04F - 160.2 \][/tex]

6. We compare this equation with [tex]\(5F + \square = 9C\)[/tex]:

[tex]\[ 5.04F - 160.2 = 5F + \square \][/tex]

7. To conform to the form [tex]\(5F + \square\)[/tex], we notice that [tex]\(5.04\)[/tex] can be approximated by 5 when rounding to a single decimal place. This introduces a slight adjustment for the constant term:

[tex]\[ 5F + 2.8 (\text{rounded from } -160.2 + 160.2) = 9C \][/tex]

Therefore, the completed equation in standard form to represent the relationship between [tex]\(F\)[/tex] and [tex]\(C\)[/tex] is:

[tex]\[ 5F + 2.8 = 9C \][/tex]

Hence, the values for the blanks in the equation [tex]\(5F + \square = 9C\)[/tex] are:
[tex]\[ \boxed{2.8 \text{ and } -15.0} \][/tex]

Thus:

[tex]\[ \boxed{5F + 2.8 = 9C} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.