Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the new coordinates of the vertex after the reflections, let's go through each type of reflection step-by-step:
1. Reflection across the [tex]\( x \)[/tex]-axis:
When a point [tex]\((x, y)\)[/tex] is reflected across the [tex]\( x \)[/tex]-axis, its new coordinates are [tex]\((x, -y)\)[/tex].
For the vertex [tex]\( (2, -3) \)[/tex]:
[tex]\[ (2, -(-3)) = (2, 3) \][/tex]
2. Reflection across the [tex]\( y \)[/tex]-axis:
When a point [tex]\((x, y)\)[/tex] is reflected across the [tex]\( y \)[/tex]-axis, its new coordinates are [tex]\((-x, y)\)[/tex].
For the vertex [tex]\( (2, -3) \)[/tex]:
[tex]\[ (-2, -3) \][/tex]
3. Reflection across the line [tex]\( y = x \)[/tex]:
When a point [tex]\((x, y)\)[/tex] is reflected across the line [tex]\( y = x \)[/tex], its new coordinates are [tex]\((y, x)\)[/tex].
For the vertex [tex]\( (2, -3) \)[/tex]:
[tex]\[ (-3, 2) \][/tex]
4. Reflection across the line [tex]\( y = -x \)[/tex]:
When a point [tex]\((x, y)\)[/tex] is reflected across the line [tex]\( y = -x \)[/tex], its new coordinates are [tex]\((-y, -x)\)[/tex].
For the vertex [tex]\( (2, -3) \)[/tex]:
[tex]\[ (-(-3), -2) = (3, -2) \][/tex]
Now, if we compare these results:
- The reflection across the [tex]\( x \)[/tex]-axis gives us [tex]\((2, 3)\)[/tex]
- The reflection across the [tex]\( y \)[/tex]-axis gives us [tex]\((-2, -3)\)[/tex]
- The reflection across the line [tex]\( y = x \)[/tex] gives us [tex]\((-3, 2)\)[/tex]
- The reflection across the line [tex]\( y = -x \)[/tex] gives us [tex]\((3, -2)\)[/tex]
Therefore, the new positions of the vertex [tex]\( (2, -3) \)[/tex] after the reflections are:
- Reflecting across the [tex]\( x \)[/tex]-axis will produce an image with the vertex at [tex]\( (2, 3) \)[/tex]
- Reflecting across the [tex]\( y \)[/tex]-axis will produce an image with the vertex at [tex]\( (-2, -3) \)[/tex]
- Reflecting across the line [tex]\( y = x \)[/tex] will produce an image with the vertex at [tex]\( (-3, 2) \)[/tex]
- Reflecting across the line [tex]\( y = -x \)[/tex] will produce an image with the vertex at [tex]\( (3, -2) \)[/tex]
These corresponding reflections provide the correct new positions for the vertex after each type of reflection.
1. Reflection across the [tex]\( x \)[/tex]-axis:
When a point [tex]\((x, y)\)[/tex] is reflected across the [tex]\( x \)[/tex]-axis, its new coordinates are [tex]\((x, -y)\)[/tex].
For the vertex [tex]\( (2, -3) \)[/tex]:
[tex]\[ (2, -(-3)) = (2, 3) \][/tex]
2. Reflection across the [tex]\( y \)[/tex]-axis:
When a point [tex]\((x, y)\)[/tex] is reflected across the [tex]\( y \)[/tex]-axis, its new coordinates are [tex]\((-x, y)\)[/tex].
For the vertex [tex]\( (2, -3) \)[/tex]:
[tex]\[ (-2, -3) \][/tex]
3. Reflection across the line [tex]\( y = x \)[/tex]:
When a point [tex]\((x, y)\)[/tex] is reflected across the line [tex]\( y = x \)[/tex], its new coordinates are [tex]\((y, x)\)[/tex].
For the vertex [tex]\( (2, -3) \)[/tex]:
[tex]\[ (-3, 2) \][/tex]
4. Reflection across the line [tex]\( y = -x \)[/tex]:
When a point [tex]\((x, y)\)[/tex] is reflected across the line [tex]\( y = -x \)[/tex], its new coordinates are [tex]\((-y, -x)\)[/tex].
For the vertex [tex]\( (2, -3) \)[/tex]:
[tex]\[ (-(-3), -2) = (3, -2) \][/tex]
Now, if we compare these results:
- The reflection across the [tex]\( x \)[/tex]-axis gives us [tex]\((2, 3)\)[/tex]
- The reflection across the [tex]\( y \)[/tex]-axis gives us [tex]\((-2, -3)\)[/tex]
- The reflection across the line [tex]\( y = x \)[/tex] gives us [tex]\((-3, 2)\)[/tex]
- The reflection across the line [tex]\( y = -x \)[/tex] gives us [tex]\((3, -2)\)[/tex]
Therefore, the new positions of the vertex [tex]\( (2, -3) \)[/tex] after the reflections are:
- Reflecting across the [tex]\( x \)[/tex]-axis will produce an image with the vertex at [tex]\( (2, 3) \)[/tex]
- Reflecting across the [tex]\( y \)[/tex]-axis will produce an image with the vertex at [tex]\( (-2, -3) \)[/tex]
- Reflecting across the line [tex]\( y = x \)[/tex] will produce an image with the vertex at [tex]\( (-3, 2) \)[/tex]
- Reflecting across the line [tex]\( y = -x \)[/tex] will produce an image with the vertex at [tex]\( (3, -2) \)[/tex]
These corresponding reflections provide the correct new positions for the vertex after each type of reflection.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.