Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's break this problem down step by step.
1. Understand the Problem:
- We are given the area of a rectangular piece of carpet: [tex]\( 150 \, \text{yd}^2 \)[/tex].
- We know that the width ([tex]\(w\)[/tex]) is 5 yards less than the length ([tex]\(l\)[/tex]).
- We need to find the perimeter ([tex]\(P\)[/tex]) of the rectangle.
2. Establish Relations and Equations:
- Given that the width is 5 yards less than the length, we can write:
[tex]\[ w = l - 5 \][/tex]
- The area of a rectangle is given by the product of its length and width. Hence:
[tex]\[ l \times w = 150 \][/tex]
- Substituting [tex]\( w \)[/tex] from the above relationship into the area formula:
[tex]\[ l \times (l - 5) = 150 \][/tex]
3. Form and Solve the Quadratic Equation:
- This expands to:
[tex]\[ l^2 - 5l - 150 = 0 \][/tex]
- This is a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex] with:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = -5 \][/tex]
[tex]\[ c = -150 \][/tex]
4. Solve the Quadratic Equation:
- Applying the quadratic formula [tex]\( l = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ l = \frac{5 \pm \sqrt{25 + 600}}{2} \][/tex]
[tex]\[ l = \frac{5 \pm \sqrt{625}}{2} \][/tex]
[tex]\[ l = \frac{5 \pm 25}{2} \][/tex]
- This gives us two potential solutions:
[tex]\[ l = \frac{30}{2} = 15 \][/tex]
[tex]\[ l = \frac{-20}{2} = -10 \][/tex]
- Since a length cannot be negative, we discard [tex]\( l = -10 \)[/tex] and take:
[tex]\[ l = 15 \][/tex]
5. Calculate the Width:
- Using [tex]\( w = l - 5 \)[/tex]:
[tex]\[ w = 15 - 5 = 10 \][/tex]
6. Find the Perimeter of the Rectangle:
- The perimeter of a rectangle is given by:
[tex]\[ P = 2(l + w) \][/tex]
- Substituting the values of the length and width:
[tex]\[ P = 2(15 + 10) \][/tex]
[tex]\[ P = 2 \times 25 \][/tex]
[tex]\[ P = 50 \][/tex]
Conclusively, the length of the carpet is 15 yards, the width is 10 yards, and the perimeter is 50 yards.
1. Understand the Problem:
- We are given the area of a rectangular piece of carpet: [tex]\( 150 \, \text{yd}^2 \)[/tex].
- We know that the width ([tex]\(w\)[/tex]) is 5 yards less than the length ([tex]\(l\)[/tex]).
- We need to find the perimeter ([tex]\(P\)[/tex]) of the rectangle.
2. Establish Relations and Equations:
- Given that the width is 5 yards less than the length, we can write:
[tex]\[ w = l - 5 \][/tex]
- The area of a rectangle is given by the product of its length and width. Hence:
[tex]\[ l \times w = 150 \][/tex]
- Substituting [tex]\( w \)[/tex] from the above relationship into the area formula:
[tex]\[ l \times (l - 5) = 150 \][/tex]
3. Form and Solve the Quadratic Equation:
- This expands to:
[tex]\[ l^2 - 5l - 150 = 0 \][/tex]
- This is a quadratic equation in standard form [tex]\( ax^2 + bx + c = 0 \)[/tex] with:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = -5 \][/tex]
[tex]\[ c = -150 \][/tex]
4. Solve the Quadratic Equation:
- Applying the quadratic formula [tex]\( l = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex]:
[tex]\[ l = \frac{5 \pm \sqrt{25 + 600}}{2} \][/tex]
[tex]\[ l = \frac{5 \pm \sqrt{625}}{2} \][/tex]
[tex]\[ l = \frac{5 \pm 25}{2} \][/tex]
- This gives us two potential solutions:
[tex]\[ l = \frac{30}{2} = 15 \][/tex]
[tex]\[ l = \frac{-20}{2} = -10 \][/tex]
- Since a length cannot be negative, we discard [tex]\( l = -10 \)[/tex] and take:
[tex]\[ l = 15 \][/tex]
5. Calculate the Width:
- Using [tex]\( w = l - 5 \)[/tex]:
[tex]\[ w = 15 - 5 = 10 \][/tex]
6. Find the Perimeter of the Rectangle:
- The perimeter of a rectangle is given by:
[tex]\[ P = 2(l + w) \][/tex]
- Substituting the values of the length and width:
[tex]\[ P = 2(15 + 10) \][/tex]
[tex]\[ P = 2 \times 25 \][/tex]
[tex]\[ P = 50 \][/tex]
Conclusively, the length of the carpet is 15 yards, the width is 10 yards, and the perimeter is 50 yards.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.