Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the equation that represents the directrix of the given parabola, we need to start by analyzing the standard form of the parabola.
The given equation of the parabola is:
[tex]\[ y^2 = 12x \][/tex]
1. Identify the standard form:
The standard form for a parabola that opens to the right is:
[tex]\[ y^2 = 4px \][/tex]
where [tex]\( p \)[/tex] is the distance from the vertex to the focus (or from the vertex to the directrix, but in the opposite direction).
2. Compare to find [tex]\( p \)[/tex]:
By comparing the given equation [tex]\( y^2 = 12x \)[/tex] with the standard form [tex]\( y^2 = 4px \)[/tex], we can identify the value of [tex]\( p \)[/tex]:
[tex]\[ 4p = 12 \][/tex]
Solving for [tex]\( p \)[/tex]:
[tex]\[ p = \frac{12}{4} \][/tex]
[tex]\[ p = 3 \][/tex]
3. Determine the directrix:
The directrix of a parabola given in the form [tex]\( y^2 = 4px \)[/tex] is a vertical line located at [tex]\( x = -p \)[/tex].
Since [tex]\( p = 3 \)[/tex]:
[tex]\[ x = -3 \][/tex]
Therefore, the equation that represents the directrix of the given parabola [tex]\( y^2 = 12x \)[/tex] is:
[tex]\[ x = -3 \][/tex]
So the correct answer is:
[tex]\[ x = -3 \][/tex]
The given equation of the parabola is:
[tex]\[ y^2 = 12x \][/tex]
1. Identify the standard form:
The standard form for a parabola that opens to the right is:
[tex]\[ y^2 = 4px \][/tex]
where [tex]\( p \)[/tex] is the distance from the vertex to the focus (or from the vertex to the directrix, but in the opposite direction).
2. Compare to find [tex]\( p \)[/tex]:
By comparing the given equation [tex]\( y^2 = 12x \)[/tex] with the standard form [tex]\( y^2 = 4px \)[/tex], we can identify the value of [tex]\( p \)[/tex]:
[tex]\[ 4p = 12 \][/tex]
Solving for [tex]\( p \)[/tex]:
[tex]\[ p = \frac{12}{4} \][/tex]
[tex]\[ p = 3 \][/tex]
3. Determine the directrix:
The directrix of a parabola given in the form [tex]\( y^2 = 4px \)[/tex] is a vertical line located at [tex]\( x = -p \)[/tex].
Since [tex]\( p = 3 \)[/tex]:
[tex]\[ x = -3 \][/tex]
Therefore, the equation that represents the directrix of the given parabola [tex]\( y^2 = 12x \)[/tex] is:
[tex]\[ x = -3 \][/tex]
So the correct answer is:
[tex]\[ x = -3 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.